
 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 Script language for programmable displays

Author: Wolfgang Büscher, MKT Systemtechnik
Date : 2021-05-05 (ISO 8601)
Master file: <WoBu><ProgrammingTool>..help\scripting_01.htm
Online: www.mkt-sys.de/MKT-CD/upt/help/scripting_01.htm
 (Note: In the printable version of this file, ?/Doku/art85122_UPT_Scripting_*.pdf, many external links don't work.)

 Contents

1. Introduction

1. Principle

2. Unlockable Features (extended script functions)

2. Script Editor with Debugger

1. Editor Toolbar

2. Hotkeys and Context Menus of the Script Editor

3. Debugging

1. Breakpoints , Single-Step

2. Disassembly

3. Trace History

4. Stack Display

5. Symbol Table with variable display

6. Watch List (shows values of a selection of variables)

© MKT / Dok.-Nr. 85122 Version 2.2 1 / 220

../help/scripting_01.htm
http://www.mkt-sys.de/MKT-CD/upt/help/scripting_01.htm

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

7. List of memory blocks dynamically allocated by the script

8. Testing the application in the target's RAM (instead of FLASH)

3. Interaction between script and display ("programmable display pages")

1. Calling a script procedure when pressing a button

2. Modifying display elements via script (texts, colours, etc)

4. Language Reference

1. Numbers

2. Strings

1. Strings with different character encodings ("DOS", "ANSI", "Unicode")

2. String usage and storage format

3. String constants with special characters

4. Strings with backslash sequences

5. String processing (functions) :
append chr ansi_chr unicode_chr CharAt char_encoding
atoi atof itoa ftoa hex HexString BinaryString
strlen strpos strpos2 stripos strrpos strripos substr
ParseInteger ParseFloat ParseHexString ParseBinaryString

3. Constants

1. Built-in constants

2. User-defined constants

3. 'Calculated' constants

4. Constant tables (arrays)

4. Data Types (built-in and user-defined)

1. int , float, double, string, byte, word, dword, bool, tColor

2. anytype

3. tMessage , tCANmsg, tScreenCell, tCanvas, tTimer, tTable, tDirEntry

4. Explicit type conversions (typecasts)

5. Variables

1. Variable declarations in the script

1. Global variables

2. Local variables

3. Pointer variables

4. The attributes 'private', 'public', 'logged' and 'noinit'

2. Accessing "script" variables from a display page

© MKT / Dok.-Nr. 85122 Version 2.2 2 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

3. Accessing "display" variables from the script

6. Arrays

1. Maximum size (capacity) versus momentarily used length (.len) of an array

2. Other elements of an array-header

1. Arrays used as FIFO (ring buffer with 'first in, first out'-principle)

2. Sampling interval and timestamp of the newest array element

3. Examples for the use of arrays

7. Operators

8. User-defined functions and procedures

1. User-defined procedures

2. User-defined functions

3. Invoking user-defined script functions from a display page

4. Invoking script procedures from display interpreter commandlines

5. Input- and output arguments

6. Recursive calls

9. Program flow control (loops and branches)

1. if, then, else, endif

2. for, to, step, next

3. while .. endwhile

4. repeat .. until

5. select, case, else, endselect

10.Other functions and commands

1. Numeric functions, "Math", and digital signal processing

2. Timers and 'Stopwatches'

3. Displaying text on a multi-line text panel (cls, gotoxy, print & Co)

4. Canvas functions (painting on a tCanvas)

5. File I/O functions (file.create, file.open, file.write, file.read, file.close,
directory.open, directory.read, ...)

6. Transmission and reception of CAN messages (via script) , CAN diagnostics

7. Controlling the programmable display pages from the script / Controlling
diagrams / display variables

8. "System" functions (read the current timestamp , keyboard, LEDs,
 onboard I/O, supply voltage, temperature, frequency counter, etc.).

9. Date- and time conversions (modified Julian date, etc)

© MKT / Dok.-Nr. 85122 Version 2.2 3 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

10.Commands for the GPS receiver

11.Functions to control the trace history

12.Functions to control the virtual keyboard

13.Interaction between Script and the Internet Protocol stack
 Internet Application Interface ('socket'-like API) :
 socket bind listen accept connect send recv close
 Internet socket state diagram
 JSON (Javascript Object Notation)
 Internet / Ethernet-related troubleshooting

14.Interaction between Script and the CANopen Protocol stack

15.Extensions to the script language for SAE J1939

16.Extensions to the script language for ISO 15765-2 (aka "ISO-TP")

11.Event Handling in the script language

1. Low-level system event handlers (OnKeyDown, etc)

2. Events originating from UPT display elements ('Control Events')

3. Timer Events

4. CAN Receive Handlers

5. Event handler for the virtual keyboard

12.Preprocessor Directives

1. #pragma

2. #include

13.Keyword List (with built-in commands, functions, data types, etc)

14.Error messages

5. Examples : CAN gateway, CAN 'ASCII' logger, calculate PI, display control, moving
average, numeric integrator, thermometer (using NTCs), timer events, control events, file
I/O, INI files, Internet,Ethernet,TCP/IP, text screen, loops, arrays,
error frames, operator test, reaction test, Quad-Blocks, trace test, CANopen, J1939, ISO
15765-2, detect bus-sleep-mode,
VT100/VT52-Emulator, custom 'popup' menu, 'App-Selector', Include files.

6. Bytecode (information for advanced users; not required to use the script language)

1. Compilation of the sourcecode into bytecode

2. The Stack (for subroutines, intermediate results, function calls, arguments, and local
variables)

3. Bytecode specification, Mnemonics and Opcodes
7. Latest Revisions

See also (links to external documents, only work in HTML but not in the "easily printable" (PDF) version of this document) :

© MKT / Dok.-Nr. 85122 Version 2.2 4 / 220

art85122_UPT_Scripting_EN.pdf

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Manual for the programming tool; main index (of the programming tool's help system),
feature matrix (to check if scripting is supported for a particular device/firmware),
display interpreter commands,
display interpreter functions .

© MKT / Dok.-Nr. 85122 Version 2.2 5 / 220

../help/progt_01.htm#interpreter_functions
../help/progt_01.htm#interpreter_commands
../help/featmatr.htm
../help/index.htm
../help/progt_01.htm

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 1. Introduction

This document describes a scripting language, which has been implemented in some programmable
display terminals by MKT Systemtechnik.

The script language can be used to ...

• Combine signals (i.e. generate "calculated" signals), or supervise signals received from CAN
or other buses,

• implement protocols (also for CAN), which are not directly supported by the device-
firmware, for example J1939, ISO 15765-2 ("ISO-TP");

• process events, which (due to their complexity) cannot be achieved in the display pages'
'Event'-definitions,

• programmatic file access, for example to implement custom specific event-logs,
automatically generated error reports, etc;

• realize simple (SPS-like) flow controls, even though not for 'hard' real time (no guaranteed
cycle time),

• implementation of algorithms which are too complex for the diplay's 'Event'-definition
(which doesn't support loops, etc).

For most applications, you will not need the scripting language described in this chapter, because
the functions for which the display terminals were originally intended can be realized without
scripting. But in a few cases, the display's programmable 'Event' handlers ("page events" and
"global events") will not be sufficient. This is where the scripting language can help.

The script language doesn't have anything to do with the older display interpreter. This document
describes the script language, not the display interpreter (the latter was used to define 'global and
local events' for the display which were relevant for the display application). The script language is
compiled once (not interpreted while it runs), using a proprietary bytecode which makes it much
faster than the display interpreter, but a bit less flexible.

Here is a simple but complete example (script sourcecode) which calculates the display variable
'Power' by continuously multiplying variables 'Voltage' and 'Current':

 while(1)
 display.Power := display.Voltage * display.Current;
 wait_ms(50); // wait for 50 milliseconds, during this time the display is
updated
 endwhile;

Throughout this document, sourcecode means the text which you typed into the script editor. The
sourcecode will be compiled into bytecode. The bytecode is then executed on the target device, or in
the programming tool's simulator.

Certain 'extended' script functions may have to be unlocked (after been paid for).

© MKT / Dok.-Nr. 85122 Version 2.2 6 / 220

../help/progt_01.htm#variables
../help/progt_01.htm#event_defs
../help/progt_01.htm#event_defs
../help/featmatr.htm

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 1 1.1 Principle

From a user's point of view, the script is just a list of instructions and program flow control
commands, entered with a simple text editor which is integrated in the programming tool. As a user,
read the chapter about the script editor (integrated in the UPT programming tools), study a few
examples (listed at the end of this document), and use the language reference to write your own
scripts. If you are already familiar with programming languages and know what procedures,
operators, arrays, strings, integer and floating point numbers are, you will only need to look at the
keyword list occasionally. Otherwise, follow the hyperlinks in this document for more info ... and
remember to use your browser's "back"-button to return to the point where you started reading.

After booting the programmable device, or starting the built-in simulator in the programming tool,
the script will start to run in the first line of sourcecode. Typically, the first part of your script
program will contain a few initialisations, like setting script variables to their default values, etc.
The end of the initialisation sequence should be marked in the script by invoking init_done. This
command enables event handlers, and allows calling the script from programmable display pages as
soon as the script is 'open for business'.

After that, a typical script will just sit and 'wait' for something special to happen, for example the
reception of CAN messages, or if any of the programmable display pages sets a signal for the script
to "do something". We'll get back to the aspects of signalling and event handling later.

 2 1.2 Unlockable Features for the script language

Only the standard script functions which were originally developed during the author's spare time
(for a his own 'hobby' purpose) are available without an extra fee. The extended functions, added
to the script language for MKT Systemtechnik during the author's working hours at MKT
Systemtechnik, must be unlocked (for a moderate fee, to cover MKT's development expenses)
before they can be used. These extended script functions include, but are not limited to, the
following "unlockable" features:

• Reception and transmission of CAN messages through the script language (CAN.xyz)

• File access functions for the script language (file.xyz), which includes the serial port(s) and
other objects which can be accessed "like a file" .

• Functions to communicate via TCP/IP or UDP

• Frequency- and event counters for the onboard digital inputs
• other hardware-dependent, specialized functions planned

As long as these functions are not unlocked, they will simply "not work". For example, if the script
in the programmable terminal tries to send a CAN message, the message simply won't be sent.
Trying to open a file, or a serial port, will return an invalid handle.

All the above features must be unlocked for the firmware, for each device on which you want to use
these features. How to request an unlock-code from the manufacturer for a particular function, in a
particular device, is described in this extra document.

We apologize in advance for any inconvience caused by the unlock procedure, but the company
(MKT) cannot offer all these new features for free. On the other hand, customers who don't need
these functions are not forced to pay for something which they will never need.

© MKT / Dok.-Nr. 85122 Version 2.2 7 / 220

../help/unlock_01.htm
../help/unlock_01.htm
../help/unlock_01.htm

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

© MKT / Dok.-Nr. 85122 Version 2.2 8 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 2. Script Editor and Debugger

The script editor is on the 'Script' tabsheet of the programming tool. If that tab is invisible, your
hardware doesn't support scripts, or the programming tool is too old.

Script editor toolbar, sourcecode (left), and debugger panel (right)

In the script editor, you can use the mouse to retrieve information about a certain keyword (or,
sometimes, about a variable). Just point the mouse cursor over the keyword for which you need
help, and wait for two seconds (don't press any mouse button for this). If the editor recognizes a
keyword 'under the mouse', it will show a short hint (text) near the keyword or the variable's name,
data type, and current value. The hint disappears as soon as you move the mouse again.

By default, the editor uses syntax-highlighting. When enabled, the language's built-in keywords are
shown in bold black characters, comments are blue, etc. Note that the syntax highlighting is not
always updated while you type. In fact, the syntax highlighting function needs a valid symbol table
(to identify the names of user defined procedures, variables, etc), which only exists after the
program has been compiled. So after entering new sourcecode in the editor, you may have to click
the 'STOP / RESET / RECOMPILE' button to update the syntax highlighting. If you find this
feature too annoying, turn it off in the script editor menu (see next chapter). The editor will use
plain 'black-on-white' characters then.

The size of the script sourcecode may be limited to 32 or 64 kByte (in some cases 256 kByte),
depending on the target system. The maximum size of the bytecode (produced by the compiler) is
32 kByte on most targets. The script editor isn't aware of such target-specific limitations, unless you
inform the programming tool about the capabilities of the target device (on the 'General Settings'
tab, "Max. size of script sourcecode in kByte").
You can see the amount of source- and bytecode memory occupied by the script in the status line on
the bottom of the 'Script' tab after compilation. For example, after a successful compilation, the
status line will show something like:

Compilation ok, 1234 of 65536 bytecode locations used, 6 kByte sourcecode.
After compilation of the script (on the PC), it can be tested with the debugger. The debugger
supports breakpoints, single-step, a disassember, the trace history, and a display for the symbol
table with variable values.

To simplify the development of scripts, the editor contains several tools explained in the following
chapters. These include, for example:

• the Toolbar (buttons above the sourcecode editor)

• the sourcecode editor's context menu (right-click into the sourcecode)

© MKT / Dok.-Nr. 85122 Version 2.2 9 / 220

../help/progt_01.htm#max_size_of_script_sourcecode

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• the sidebar's context menu (right-click into the line numbers)

A few script editor settings (like the tabulator size) can be configured in the programming tool's
main menu under 'Options' .. 'Script Editor'.
Details about the tools for the development of scripts follow in the next chapters.

 1 2.1 The Script Editor Toolbar

The toolbar contains the usual editor functions like find, copy, paste, and cut (using the windows
clipboard like any other text editor). In addition, there are these graphic buttons:

 RUN

Starts execution of the script, or continues execution at the last position. If the script wasn't
compiled after the text was modified in the editor, it will be recompiled.
Execution may stop when the program hits a breakpoint, or an error occurrs.

 STOP / RESET / RECOMPILE

Stops execution (if running), or resets / recompiles the code (if already stopped). Clicking this
button with the PC's shift key held down sets the execution pointer into the line of the cursor
("caret" in the editor text).

 SINGLE STEP (F7, aka 'Step In')

Executes the next command (which is marked with a green arrow on the left side of the editor
text). Especially useful after hitting a breakpoint.
If the current line (marked by the green arrow) contains the call of a subroutine (procedure or
function written in the script language), this command will step into the subroutine.

 STEP OVER (F8)

Also used to single-step through the script under debugger control. In contast to the normal
single step command (F7, aka 'Step In'), 'Step Over' executes a complete subroutine
(procedure or function written in the script language), inclusive anything called 'from there'.

 STEP OUT

Executes the rest of the current subroutine (function or procedure), until 'returning to the
caller'. Typically used in combination with the 'Single Step' aka 'Step-In' command.

 View "CPU" (debugger code window)

Opens the disassembly view on the right side of the script editor tab. Used for hardcore-
debugging (to track down stack problems, etc).
While the disassembly-view is open, the single-step function executes one (virtual) machine
code instruction per step, not one script-line !

 Script editor menu

Opens a popup menu with the less frequently used 'special functions', most related with
debugging and editing (e.g. line markers, breakpoints, trace history, watches,.. - see
screenshot further below).

© MKT / Dok.-Nr. 85122 Version 2.2 10 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

In this menu, you can also enable/disable the editor's syntax highlighting, select fonts for
editor and debugger, and configure a few other script-editor related parameters.
Hint: When available on your PC, 'DejaVu Sans Mono' often results in a better readable
display than 'Courier New'.

 Find text

Finds a string of characters in the script editor. The string to find is entered in the usual 'find'
dialog. Then click the 'Find Next' button ("Weitersuchen" in german).
See also: 'Global Search' on all display pages, and in the entire script sourcecode,
invoked via context menu after right- or double-click on the to-be-searched word in the
sourcecode editor.

 Import script from a file

Imports a script sourcecode from a plain text file. All breakpoints in the previous script will
be lost.

 Export script as a file

Exports the script sourcecode as a plain text file. Breakpoints will be lost when saving and re-
loading the program ! Note that the script is saved as part of the terminal's display application
(*.upt or *.cvt), so usually you don't need this function. It can be used to transfer (copy) a
script from one application to another (as plain text), or to export the script (with syntax
highlighting) for documentation (as RTF oder HTML).
Hint: When exporting a script as *.HTM (HTML), links to the documentation will
automatically be inserted. The author made heavy use of this option when writing this
documentation, especially in the 'Examples' chapter.

The left border of the script editor shows sourcecode line numbers,
indicators for 'lines with executable code', breakpoints, etc.
Possible indicators on the left side of the sourcecode editor are:

 (green arrow pointing right)
Current instruction pointer .
Shows the next line to be executed. Used during single-step debugging.

 (small hollow gray circle)
There is executable code in this line but the program has "not been here yet" .
Code was produced for this line when compiling, but it has not been executed yet (since the
script program was started).
During debugging, you can set a breakpoint in this line by clicking on this indicator.

 (blue solid circle)
"Been here since the program started".
Code was produced for this line by the compiler, and it has been executed at least once since
the program started.

© MKT / Dok.-Nr. 85122 Version 2.2 11 / 220

../help/progt_01.htm#global_text_search

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

During debugging, you can set a breakpoint in this line by clicking on this indicator.
The 'Reset' function clears all 'been-here' markers (see toolbar buttons above).

 (large red solid circle)
A breakpoint has been set in this line, and the program has not "been here" yet.
If the 'running' program hits this breakpoint, it will stop.
You can easily inspect variables then (because their values won't change while stopped).

 (red circle with blue center)
A breakpoint has been set in this line, and the program has 'been here' since it was last reset.

 (yellow triangle with black border)
Warning or error in this line .
Something went wrong in this line, either during compilation, or during runtime. Check the
error message in the status line !
To get more details about the error, point the mouse on this symbol, and watch the text in the
status line. Additional info about certain errors or warnings may be displayed on the
programming tool's Errors & Messages tab.

Note that while editing, especially when inserting new lines in the sourcecode, the code indicators
will disappear. Breakpoints remain on their fixed positions (unfortunately they cannot "move
around automatically" when the sourcecode is modifed, or moved to another location).

Clicking into the sidebar (line number or symbols shown above) with the right mouse button opens
the sidebar's own context menu. It contains functions like 'Show execution point', 'Show first error
in line xyz', 'Toggle breakpoint in line xyz', etc. Details about the sidebar's context menu are in the
next chapter.

Clicking on the 'Menu'-Button ('wrench' icon) in the script editor's toolbar opens the following
menu, which is mainly used while debugging:

© MKT / Dok.-Nr. 85122 Version 2.2 12 / 220

../help/progt_01.htm#error_page

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Screenshot of the 'debug menu' on the script editor tab

 2 2.2 Hotkeys and Context Menus of the Script Editor

CTRL-C
Copy selected text into the windows clipboard

CTRL-V
Paste text from the windows clipboard

CTRL-F
Find text (opens the usual non-modal 'Find' dialog)

CTRL-Z
Undo last editing step

SHIFT-CTRL-Z
Redo ("undo undo")

F1
Extended help about a keyword in the script editor (sourcecode window).
Point the mouse on a keyword, and wait until the bubble hint shows a brief information.
If the brief information is not sufficient, press F1 (while the bubble is visible) to get more
help, displayed in the web browser.
Unfortunately this only works with a 'good' browser, which can jump to (scroll to) a text mark
(anchor) after loading the HTML document.
At the time of this writing (2013-08), Firefox and Iron/Chrome appeared to be 'good'
browsers.

F7
Single step (for debugging; details in the next chapter)

Furthermore, the editor supports all keyboard shortcuts implemented by Microsoft's 'Rich Text' edit
control.

© MKT / Dok.-Nr. 85122 Version 2.2 13 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Right-click into the script editor (sourcecode) to open its context menu. For certain special
functions, the 'word' in the sourcecode (under the mouse pointer) will be evaluated then, for
example to add the name of a global variable as an 'expression' to the watch list, or to get help about
a certain keyword, function or variable:

Screenshot of the script editor with context menu, after right-click on a certain word

Right-click into the 'Sidebar' (with line numbers and code execution indicators) opens another
context menu:

Screenshot of the sidebar's context menu, opened by right-clicking on a line number

© MKT / Dok.-Nr. 85122 Version 2.2 14 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 3 2.3 Debugging

No non-trivial program will be free of errors right from the start. The programming tool has some
basic debugging capabilities, listed below. To debug the code, you must run it in the programming
tool. A bit of 'remote debugging' on the real target is possible via web browser (HTTP).
During a debug session, the screen may be split into two areas, with the sourcecode in the left half,
and some other information in the right half (e.g. Bytecode, Symbole, or single Variables). The
blue-coloured splitter (between sourcecode and debugger) can be moved with the mouse.
The 'kind' of debugger display can be selected via menu, hyperlink (as in the symbol table), or with
the combo box on the right side of the toolbar:

Selecting a debugger display mode via combo box,
with "BACK"- and "FORWARD" button as in a web browser.

• Breakpoints :
Breakpoints can stop the execution of the script. To set or delete a breakpoint, click on one
of the 'excutable code markers' on the left side of the editor window.
The left mouse button simply toggles a breakpoint (on/off), the right mouse button opens a
context menu with advanced options.

• Single step :
Stop the script using the 'Stop' (or single step) button in the editor's toolbar, and continue
execution step-by-step (with the single-step button) .

• Inspect variables :
Move the mouse over the name of a global variable in the sourcecode, and wait for half a
second. The program will look up the word 'under the mouse' in the list of global script
variables, and show the result if it finds one. This even works while the script is running ...
at least for global variables.
Note: Inspecting local variables is not as easy as global variables, because during runtime,
global variables don't have a name - just an address in the current stack frame - and thus it's
extremely difficult to retrieve their values because (in contrast to global variables) their
memory location cannot be found in the symbol table. Therefore, the debugger can only
look up local variables if the program is currently 'pausing' in the user-defined function or
procedure to which a local varible belongs. If user-defined functions & procedures call each
other recursively, the debugger can only inspect local variables within the current stack
frame (which is the stack frame to which the base pointer currently points).

In devices with a sufficiently large screen (MKT-View), script variables can also be
examined in the device's system menu :

© MKT / Dok.-Nr. 85122 Version 2.2 15 / 220

../help/progt_01.htm#upt_system_menu
http://www.mkt-sys.de/http_server_info/srv_info_01.htm#debugging

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

In the main system menu, scroll down to 'Script:', press ENTER (or similar) to open a
submenu, and select 'Variables ..' there.
Scroll through the list via cursor up/down or rotary encoder. The list only shows the
variable's name (left) and current value (right). For more details on a certain variable, press
ENTER (or the rotary encoder knob) to select it and switch to the 'Script Var Details' (menu)
on the programmable device.

• Symbol table display :
The symbol table is generated by the script compiler. You can show the entire table, or only
the global variables, or only the names of user-defined functions and procedures on the right
side of the main window. Names, sourcecode line number, or code addresses shown in the
symbol table can be clicked like a 'hyperlink' to scroll ("navigate") in the sourcecode.

• Stack display :
While single-stepping, the status line of the editor may show the topmost elements on the
script's stack. This function was mainly used during implementation of the script language,
but you can use it to examine the stack - especially if your application makes heavy use of
subroutines, and you want to find out "how the program got to the current point" (call stack).

The top of the stack (a few elements) can be displayed in the status line, or as a multi line
text on the right side of the script tab.
Example for a single-line display, with six elements on the top of the stack displayed in the
status line:
Stack[6] : tCANmsg 0 return_to_822 1 65230 0
Details about the stack display (also as a multi-line list) can be found here.

• Memory Usage Display :
After a test session in the simulator, you should occasionally check your application's
memory consumption - especially if you use a lot of strings, especially when using strings in
arrays.
To show the memory usage in the simulator / debugger, click on the script editor's menu
button, and select Show Memory Usage .
The status line will now show the memory usage (continuously updated, while the script
runs), for example:
Memory Usage : 5 of 256 stack items, peak=33; 7 of 200 variables; 62 of 1000 data blocks, peak=85
which means:

5 out of 256 items on the RPN stack are currently used;
the peak stack usage (since the script was started) was 33 out of 256 possible entries;
7 out of a maximum of 200 global variables are used;
62 out of a maximum of 1000 data memory blocks (with up to 64 bytes per block) are
currently used;
the peak memory usage (since the script was started) was 85 out of 1000 possible
entries.

This is a typical 'non-critical' example because all peak values are way below the maximum
allowed sizes.
If any of the three parameters (stack usage, number of global variables, or number of data
blocks) gets critically close to the maximum, try to ...

© MKT / Dok.-Nr. 85122 Version 2.2 16 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• reduce the 'stack' size by using less local variables, and less recursive procedure
calls;

• reduce the 'block' memory consumption by decreasing the array sizes;
• reduce the 'block' memory consumption by using less strings, or assign empty strings

to string variables if you don't need their values anymore, like:
Info := ""; // clear this string to release its memory
block

Note: The Memory Usage display on the Script tab only shows the memory used by the
script.
This hasn't got anything to do with the memory used for the UPT's programmable display
(for icons, display pages, etc) ! The script uses its own memory pool, so the UPT display
will remain operational even if the script runs out of resources, and stops due to a
programming error.
The memory usage can also be checked in the script itself, using the function
system.resources .
To check the target's remaining Flash memory space (after subtracting the size occupied by
script, display pages, bitmaps (icons), display-variables, and other special items, use 'View'
(in the tool's main menu), menu item 'Target Flash memory usage'.
Details about the current usage of dynamically allocated memory can be shown (in the
debugger) as explained here.

• Disassembly display (code window) :
Shows the bytecode in disassembled ("human readable") form. While this display is open,
single-step in the debugger doesn't step through the sourcecode line-by-line, but instruction-
by-instruction through the bytecode. More details in chapter 2.3.2.

Script editor toolbar, sourcecode (left), and debugger/disassembler (right)

• Trace History :
Shows the last 255 events (or even more) with ...

• CAN messages which have been sent (transmitted) by the device

• CAN messages which have been received by the device

• Error messages and warnings (by the device firmware or simulator)

• Text messages and 'info lines' generated by the trace.print command

• Debug info from the Internet-related script functions (optional)
Details about the Trace History follow in chapter 2.3.3.

• Watch Expressions :
Shows a user-defineable selection of 'expressions' (at the moment, limited to global script
variables) on the debugger panel. These can be the current values of 'simple variables', but

© MKT / Dok.-Nr. 85122 Version 2.2 17 / 220

../help/progt_49.htm#target_memory_usage_report
../help/progt_01.htm#icon_memory_dlg

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

also complete arrays and user-defined types (structs) can be inspected this way. Details
about the watch list follow in chapter 2.3.6.

Hint:
In a debug session, it helps a lot to have two monitors connected to the development PC.
Move the programming tool's main window to one monitor, and the LCD simulator window
to the other. If you're not that lucky (only one monitor), make the size of the simulator just as
large as it needs to be (to see all pixels), and use the option 'stay on top' for the LCD simulator
window. You can then move the simulator into the upper right corner of your screen where it
doesn't obscure any 'vital parts' of the script editor. The simulator will remain visible, even
after maximizing the tool's main window, and even when the keyboard focus is not on the
simulator (but inside the script editor).

See also: Debugging via Embedded Web Server (and HTML Browser)

© MKT / Dok.-Nr. 85122 Version 2.2 18 / 220

http://www.mkt-sys.de/http_server_info/srv_info_01.htm#debugging
../help/progt_01.htm#simulator_always_on_top
../help/progt_01.htm#lcd_sim_window

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 4 2.3.1 Breakpoints and Single-Step mode

Breakpoints can stop the execution of the script. To set or delete a breakpoint, click on one of the
'excutable code markers' on the left side of the editor window.

For Single step operation, you can either stop the script using the 'Stop' (or single step) button in
the editor's toolbar, or use a breakpoint to let it stop there.
After that, continue execution step-by-step (with the single-step button) .
If the script stops (in the simulator) due to hitting a breakpoint, or after an error occurred, the status
line shows the the line number in which the program stopped (and some more info). Example:

Status bar of the script editor after hitting a breakpoint

A double-click into the status bar will then scroll the editor, so the currently executed line (or the
line in which an error was detected) becomes visible.

In disassembly mode (see next chapter), single-step mode applies to single bytecode instructions
rather than single lines of sourcecode.

Hint:
Some devices (like MKT-View II / III, with Ethernet port and embedded web server) support
debugging without the UPT programming tool.
That 'remote' debugger is operated via web browser (and TCP/IP, HTTP, HTML, Javascript);
it also supports setting multiple breakpoints during normal operation and single-stepping.
To operate it, enter the device's host name or numeric IP address in the browser's address bar,
followed by /script/d ('d' is the option for "Sourcecode Debugger").
For some stupid browsers you may have to add the transport protocol (before the address), for
example: http://upt/script/d .
Details about remote debugging are here (external link).

© MKT / Dok.-Nr. 85122 Version 2.2 19 / 220

http://www.mkt-sys.de/http_server_info/srv_info_01.htm#script_d
http://upt/script/d

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 5 2.3.2 Disassembler display (code window)

Only for advanced users !

The disassembly view can be opened through the script editor's toolbar ("chip" icon). It's an extra
display panel on the right side of the editor, which shows the bytecode in disassembled ("human
readable") form. While this display is open, single-step in the debugger doesn't step through the
sourcecode line-by-line, but instruction-by-instruction through the bytecode. This makes it possible
to see how numeric expressions ("formulas") are evaluated in the RPN (Reverse Polish Notation),
and how subroutines (functions) are invoked with parameter passing via the stack.

Screenshot of script editor (left) with disassembly (right)

Immediately after the script was stopped via breakpoint, or when stepping through the bytecode in
the disassembler, the current execution point (green arrow) sometimes doesn't seem to move in the
sourcecode window. The resson is that each line of sourcecode usually consists of multiple
bytecode instructions. Thus, to execute a single line of sourcecode, multiple single steps may be
necessary (by pressing F7).

To scroll the disassembler display to the address of a certain function, click on the hexadecimal
code address (e.g. c:0ABC) in the symbol table, right next to the name of the function or procedure.

To close the disassembly window, and resume normal single step mode (line-by-line, not
instruction-by-instruction), use the combo box in the upper right corner of the script editor tab, and
select Hide Debug View instead of Disassembly (etc) .

© MKT / Dok.-Nr. 85122 Version 2.2 20 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 6 2.3.3 Trace History

The trace history can be used any time to check the events listed below, in chronological order. It is
implemented in the firmware of most devices (if the device supports scripting), but also in the
programming tool (simulator). Typically, up to 255 entries can be stored in the history; more
(newer) entries will overwrite the oldest part (as in a FIFO - first in, first out).
Events which can be recorded in the history are:

1. CAN messages which have been sent by the terminal ("Tx")

2. CAN messages which have been received by the terminal ("Rx")

3. Error messages and warnings by the system (device firmware or simulator)

4. Messages which have been "printed" into the history by the user application (script)
5. Other events, when enabled by the trace.enable flags

Chapter overview: Trace History display format, Trace History usage, Trace History invocation .

 6.1 2.3.3.1 Trace History display format

The display format of CAN messages in the Trace History is half-way compatible with Vector's
widespread "ASCII" format for CAN logfiles. Thus, even for devices without an integrated CAN
logger / snooper, it is possible to trace CAN-bus related problems (which is especially helpful when
implementing 'exotic' CAN protocols in the script language).

CAN message format in the Trace History:

Timestamp Bus CAN-ID Rx/Tx d Length Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
57.211 1 12345678 Rx d 8 F2 68 11 76 EE 86

A similar format can also be used when converting CAN messages (tCANmsg) into strings,
depending on CAN.string_format .
CAN-Identifiers with 11 bit (standard frames) are displayed with 3 digits. 29-Bit-Identifier
(extended frames) are shown with 8 digits as in the example. LIN-Bus-Frames are (optionally)
displayed like CAN messages in the trace history.
Messages (text lines) entered into the history by command ('trace.print') can have any format; only
the timestamp (in seconds, with three decimal places) are added automatically at the begin of each
line. The second counter starts at zero when the device is turned on, or when the simulator is started
/ reset.

 6.2 2.3.3.2 Trace History usage

In the simulator (integrated in the programming tool), the Trace History can be displayed on the
right side of the 'Script' tab. To achieve this, select 'Show Trace History' in a combo box on the
script toolbar:

© MKT / Dok.-Nr. 85122 Version 2.2 21 / 220

../help/LIN_Bus_01.htm#frame_display_in_trace

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Trace History displayed in the programming tool

After selecting 'Show Trace History, paused' you can scroll back through the history, as long as the
limited trace memory permits.
Switching to 'Show Trace History, running' will permanently append new entries at the end of the
display, and the vertical scroller will automatically be moved to the end of the list, so the newest
entry is always visible.
Right-click into the Trace History (in the programming tool) opens the following context menu:

Context menu to control the Trace History in the programming tool

The menu shown above can be used to suppress certain CAN message identifiers in the Trace
History. This feature is often used to avoid 'flooding' the display with non-important, but frequently
transmitted CAN frames.

On a real target device, the Trace History can be accessed (inspected) through the system menu.
Select 'Diagnostics' .. 'TRACE History' there. Details about the system menu are in document
#85115 (System Menu and Setup in programmable CAN display terminals by MKT).

See also: 'Trace History invocation' in this document, Wireshark-compatible Packet Capture
.

 6.3 2.3.3.3 Excluding certain CAN message identifiers from the Trace History

To suppress ("blacklist") a certain CAN message identifier for the display, click on its hexadecimal
identifier with the right mouse button in the trace display, and select 'Exclude CAN-ID from the
trace history'.
Alternatively items in the blacklist can be edited (in hexadecimal form) via context menu, sub menu
titled 'CAN IDs excluded from the trace history'. This menu also shows a complete list of all
currently black-listed CAN message identifiers.
Suppressing certain CAN identifiers as described above only affects the trace history display in the
programming tool (simulator), but not the 'real' device (i.e. hardware like MKT-View III which

© MKT / Dok.-Nr. 85122 Version 2.2 22 / 220

../help/progt_01.htm#wireshark_capture
http://www.mkt-sys.de/MKT-CD/handbuecher/art85115_Sysmenu_Setup_EN.pdf

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

also has a built-in trace history).

In a 'real' device (but also in the simulator), the script itself can access the CAN-ID-blacklist via
trace.can_blacklist[i] .

 6.4 2.3.3.4 Accessing the Trace History via web browser

The easiest method to check the Trace History in a real device is through your web browser (for all
devices with Ethernet and embedded web server). In most cases, you can access the device easily
through its host name (which is "upt" by default, but the name may have been changed in the
device's network setup). The full URL would be "http://upt/trace.htm", but the protocol name (http)
is usually added by the web browser internally, and not shown in the address bar. Here for example
the Trace History displayed in the author's favourite browser:

Trace History read via embedded web server, and displayed in a web browser

In case of problems with the network connection (or the web browser), see 'Troubleshooting' in the
description of the embedded web server.

 6.5 2.3.3.5 Reading the Trace History via serial interface

Alternatively, and depending on the hardware, the trace history can be read as plain text through a
serial port, and saved as a text file on the PC.
To read the trace history via serial interface (RS-232 or Virtual COM Port), use a terminal program
like 'Hyperterminal', and enter the command ***trace*** followed by carriage return ("Enter"
key). The default baudrate for the serial interface is 19200 bits/second for most devices with a 'real'
RS-232 port (like MKT-View 2). For device which only have a Virtual COM Port (looks like an
USB device adapter from outside), try 115 kBit/second.
Since the serial port might have been reconfigured by the application (script), theres no easy way to
tell the correct communication parameters here. Usually either "115200 8-N-1" or "19200 8-N-1"
should work.

© MKT / Dok.-Nr. 85122 Version 2.2 23 / 220

http://www.mkt-sys.de/http_server_info/srv_info_01.htm#troubleshooting
http://upt/trace.htm
../help/progt_01.htm#sysmenu_network_setup

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Trace History read via serial port, and displayed in 'HyperTerminal'

Unfortunately, in Windows 'Vista' and Windows 7/8/10, HyperTerminal isn't included anymore. In
this case, we recommend using PuTTY (freeware terminal software) to read the Trace History
through the serial port (if memory card or Ethernet is not available).

 6.6 2.3.3.6 Saving the Trace History as a file

Last not least, if your PC (or your local network) refuses to establish a TCP/IP connection to the
terminal, you can alternatively retrieve the Trace History as a plain text file by saving it on the
memory card: First invoke the trace history on the device's own screen, press the 'Menu' button
(softkey) there, and select 'Save Trace as file'. The firmware will dump the trace memory as plain
text files, beginning with the name 'TRACE000.TXT'. With each new call of the 'Save as file'-
function, a new file will be written (TRACE001.TXT, TRACE002.TXT, and so on).

The same function can be invoked directly from the script (trace.save_as_file).

The Trace History (in RAM) will be deleted when turning off the device, because it is only buffered
in RAM for performance reasons. It cannot (and shall not) replace the CAN logger / 'Snooper'
which is integrated in certain devices.

The trace accumulated in the simulator (i.e. the programming tool) can be copied into an own
document (and thus be saved 'as a file' on the PC) as follows:

1. Set the focus into the trace history display (via mouse click, etc)

2. press CTRL-A (select all) or mark the interesting part of the trace via mouse

© MKT / Dok.-Nr. 85122 Version 2.2 24 / 220

../help/canlg_01.htm
http://en.wikipedia.org/wiki/PuTTY

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

3. press CTRL-C to copy the selected text into the windows clipboard (as usual)
4. set the focus into your own document, and press CTRL-V to paste (insert) the text from the

clipboard

 6.7 2.3.3.7 Trace History invocation

There are several methods to invoke the Trace History Display locally, i.e. show it on the terminal's
own screen.
Here, for example, how to invoke the Trace History Display in the MKT-View II / MKT-View III :

1. Draw the gesture 'U' on the touchscreen to enter the device's shutdown / system popup
window.
Alternatively (for devices without a touchscreen), press F2 + F3 simultaneously to enter the
system menu.

2. Select 'SETUP' (in the 'shutdown' window) if not already there.

3. In the 'Main system setup', select 'DIAGNOSTICS'.
4. Select 'Trace History'. The number in parenthesis (after the menu item) shows the number of

entries which are currently stored in the Trace History.

 ---->
Invocation of the Trace History via system menu, and display on the device's "local" screen

The softkey 'Menu' (marked in blue in the above screenshot) can be used to open the following
menu:

Menu with Trace History Options, here in an MKT-View III

In most (but not all) devices by MKT, the following entries are available in the menu shown above:

© MKT / Dok.-Nr. 85122 Version 2.2 25 / 220

../help/progt_01.htm#upt_system_menu
../help/gestures_01.htm#hard_coded_gestures

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Exit Trace Display
Leave the trace history display, and return to the caller (which is usually the system menu)

Back to Trace Display
Leave the 'Options' menu, and switch back to the trace history display

Save Trace as file
Saves the trace history buffer as a plain text file on the memory card. Details here.

Show messages from CAN1 = {0,1}
1 (Default): Show CAN-messages sent to, and received from, the first CAN interface.
0: Don't show these messages (and don't enter them into the history buffer, from now on).

Show messages from CAN2 = {0,1}
1 (Default): Show CAN-messages sent to, and received from, the second CAN interface. 0:
Don't show these messages.

Show messages from CAN-via-UDP = {0,1}
1: Show CAN-messages 'tunneled' via UDP (Ethernet). 0 (Default): Don't show these
messages.

Stop when buffer is full
Special option to trace problems during startup / network boot / initialisation.
TRUE : The trace history will be stopped when the history buffer is full. Thus only the 'oldest'
entries are available.
FALSE: The trace history will continue running (even when the buffer is full), thus only the
'newest' entries are available.

The default setting is 'FALSE', i.e. the trace historie will not be stopped (at least not
automatically), and (depending on the firmware) only the last 255 or 511 entries can be
viewed or exported.

See also: Reading the trace history via web browser (remotely),
 Wireshark-compatible Packet Capture (also supports CAN, as an alternative for the
TRACE history)

© MKT / Dok.-Nr. 85122 Version 2.2 26 / 220

../help/progt_01.htm#wireshark_capture

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 7 2.3.4 Stack Display (with caller addresses and local variables)

While single-stepping, the status line of the editor may show the topmost elements on the script's
stack. This function was mainly used during implementation of the script language, but you can use
it to examine the stack - especially if your application makes heavy use of subroutines, and you
want to find out "how the program got to the current point" (call stack).

The top of the stack (a few elements) can be displayed in the status line, or as a multi line text on
the right side of the script tab.
Example for a single-line display, with six elements on the top of the stack displayed in the status
line:
Stack[6] : tCANmsg 0 return_to_822 1 65230 0

To display the stack completely (including all values, also of structured data types like CAN-
messages), select 'Show Stack' in the combo in the upper right corner of the 'Script' tab. Example:
Stack[005]*: tCANmsg={ 1CEA00FF 3 CE FE 00 }
Stack[004] : 0
Stack[003] : return to line 822
Stack[002] : 1
Stack[001] : 65230
Stack[000] : 0

In the example shown above, the topmost entry (pushed to the top of the stack at index 5) contains a
CAN message (format: ID, number of data bytes, data bytes, hexadecimal). The entry at index 3 is a
return address (pushed before calling a procedure or function). By clicking the line number (here:
sourcecode line 822, underlined) that part of the script can be scrolled into view in the script editor.
Entries without a type indication are integer or floating point numbers. Strings are enclosed by
double quote characters (as usual in "C").

Note: The topmost stack element has the largest index. The initial stack index (when the stack is
empty) is zero.

© MKT / Dok.-Nr. 85122 Version 2.2 27 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 8 2.3.5 Symbol Table with variable display

In the programming tool, the symbol table can be displayed on the right side of the main window.
Select the item 'Symbol table, complete' or 'Symbol table, global variables' in the combo box in the
scipt editor's toolbar. The 'complete' symbol table also shows the names and locations of local
variables (which cannot be inspected). The display with 'global' variables only shows global
symbols (global variables of the script, functions, procedures, and constants).
In the tabular display, all symbols are sorted by name, which makes this display a valuable tool for
'navigation': Click on the 'Line number' (which is shown like a hyperlink) to scroll the script editor
to the line in which a variable (or function, procedure, constant, etc) is defined.

Screenshot of the script symbol table in the programming tool

Clicking on one of the 'Values' in the symbol table opens a small popup menu as shown in the
above screenshot.
'Show value in watch list' will add the symbol (usually a global script variable) to the 'watch list'
shown in the next chapter.
Clicking on a blue underlined code address (e.g. c:0ABC) switches from the symbol table display
into the disassembler.

Hints:
For devices with Ethernet connector and embedded web server (like MKT-View III), global
script variables can also be inspected via HTML browser.

In devices with a sufficiently large screen (e.g. MKT-View III/IV/V), script variables can also
be examined in the device's system menu. Follow this link for details.

© MKT / Dok.-Nr. 85122 Version 2.2 28 / 220

../help/progt_01.htm#upt_system_menu
http://www.mkt-sys.de/http_server_info/srv_info_01.htm#script

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 9 2.3.6 Watch List (shows values of a selection of variables)

In contrast to the symbol table display, the watch list only shows a user-defined selection of global
script variables. This works with 'simple' script variables, arrays and user defined types.
 (for experts: the evaluation of arbitrary expressions is not supported yet)
New items can be added to the watch table is via the symbol table, as explained in the previous
chapter, or via the script editor's context menu.

Screenshot of the script editor's Watch List in the programming tool

Clicking on the name of a variable (or, in future, an expression) in the watch-list opens a small
popup menu as shown in the above screenshot. The items in that menu are:

Delete entry
deletes the previously clicked item from the watch list

Hide entry
temporatily hides the display of the value, without deleting the item from the list.
For arrays and larger structures, this can save a lot of screen space in the watch display.

Show entry
Makes the value visible again, after it was hidden as explained above.

Delete all entries
Quickly removes all entries in the watch list. Usefull after switching from one project to
another, before adding new items to the watch list.

Append more entries from symbol table
Switches to the symbol table, from which you can select more items (usually global script
variable) to be displayed in the watch list.

See also: Watch-Window of the programming tool (use the prefix 'script.' to inspect script variables
there)

© MKT / Dok.-Nr. 85122 Version 2.2 29 / 220

../help/progt_01.htm#watch_window

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 10 2.3.7 List of memory blocks dynamically allocated by the script

To see details about the current usage of dynamic memory (allocated by your script), select
Dynamic memory blocks in the combo-box in the upper right corner of the 'Script' panel.
The right half of the script panel will then show a list of all with all blocks, including the names of
all script variables attached to those blocks.

Dynamic memory blocks
Block[0000] : 64 byte, Timer1
Block[0004] : 64 byte, Info
Summary: 2 blocks in 2 objects, 4094 blocks free.

(sample display of dynamically allocated memory blocks)

Similar as in most other debugger views, you can switch to the declaration of the variable by left-
clicking on the blue underlined ("link-like") variable name.

© MKT / Dok.-Nr. 85122 Version 2.2 30 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 11 2.3.8 Testing the application in the target's RAM (instead of FLASH)

To save precious time during the development phase, an application (incl. script) can be uploaded
directly into the target system's main memory (RAM), without storing it permanently in "Flash"
memory.
This eliminates the time for erasing and reprogramming the FLASH memory (which may take
dozens of seconds, depending on the FLASH memory technology), thus the "modify - download -
test" cycle is significantly faster this way, regardless of the transfer medium.
To transfer the application from the programming tool into the target's RAM ('without Flashing'),
select the following function in the main menu:
 Transfer .. Send application to terminal without flashing .

Note:
We strongly recommend to test new applications not only in the simulator, but also on the
'real' hardware on which the application is supposed to run !
The execution speeds depend a lot on the CPU. For example, a script which runs 'fluenty' and
without any problems on an MKT-View IV (with 200 MHz Cortex-M4) may be much slower
on an MKT-View II (with 72 MHz ARM7TDMI), causing timeouts as explained in chapter
about event handling.

Back to the overview about 'Debugging'

© MKT / Dok.-Nr. 85122 Version 2.2 31 / 220

../help/progt_01.htm#program_transfer
../help/progt_01.htm#transfer_medium

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 3. Interaction between script and display ("programmable display pages")

In some applications, the script only works "silently in the background", for example process
signals from received CAN messages, or run protocols which are not implemented in the firmware.
In most applications, the script and the "programmable display pages" directly interact with each
other. Examples:

• The operator presses a button (on the touchscreen), and the button's "reaction" (interpreter
command line) modifies the value of a script variable (which is then, a few milliseconds
later, processed in the script's main loop);

• The operator presses a button (on the touchscreen), and the button's "reaction" (interpreter
command line) invokes a procedure written in the script language;

• The script detects a critical value in one of the 'display variables' (connected to CAN) and
changes the background colour of a display element from green to red (just as an example);

• The script can intercept certain user actions by an event handler (advanced topic "for later")

See also (links to other chapters in this document) :

• Accessing display variables from the script

• Accessing script variables from the display interpreter

• Accessing display elements (on the current display page) from the script

• Invoking script procedures from the display interpreter
• Invoking script functions from display pages (to retrieve a text strings for the display, used

for internationalisation)

 1 3.1 Calling a script procedure as reaction when pressing a button

Before the implementation of the script language, the 'reaction' on pressing a button was specified
as a display interpreter command (for example, g(pn+1) to switch to the next page).
For compatibility reasons, that is still possible. But for more advanced applications, a graphic
button's "reaction" (when the button is operated via touchscreen or rotary encoder knob) should
better be implemented in the script.
To achieve that, there are several possibilities (listed in the introduction of chapter 3).
In the following example, we will define a graphic button on one of the UPT's display pages, and let
that button call a user-defined procedure when the button is pressed.

© MKT / Dok.-Nr. 85122 Version 2.2 32 / 220

../help/interaction_script_display

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Screenshots from the programming tool, details in the document
about programmable buttons

Double-click into the button definition's "Reaction" field (see left image shown above) to open a
selection list for the button's reaction (right image). The 'script' tab (in the right image above) will
be filled with a list of already existing script procedures.
Pick one from the list(in this example, "StartTest"), or (for advanced users preferring the keyboard)
enter the name of the script procedure manually on the tab labelled 'display line properties':

© MKT / Dok.-Nr. 85122 Version 2.2 33 / 220

../help/btns_01.htm#connecting_buttons_and_script

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Screenshots from the programming tool, "Display Line Properties" for a Button

The programming tool will automatically insert the keyword "script." before the name of the
procedure.
If the button's "Reaction" field already contains the call of a script procedure, you can quickly
switch from the page definition ("Display Line Properties" shown above) to the script editor by
double-clicking into that field. The script editor will automatically scroll to the begin of the
procedure. The (script-) code below shows a simple example (taken from the "Ini-File"-demo):

proc StartTest // Called from the DISPLAY (a button's "reaction"). Starts the
"test"....
 iStartTest := TRUE; // here: only SET A FLAG, and do the rest in the script's
MAIN LOOP
endproc;

In the procedure shown above, only a flag (integer, iStartTest) is set in the 'button reaction'. The real
work is done somewhere else (in this case, in the script's main loop).
This avoids runtime problems like blocking the display task for "too long" (-> timeout), as
explained in the yellow box in chapter 4.11, Event Handling .

 2 3.2 Modifying display elements via script (texts, colours, etc)
The script has 'full control' over all elements on the current display page.
As already mentioned in the introduction of chapter 3, the script can access any display element to
modify its colour, text, position, size, etc.
For advanced users, this topic is explained in chapter 4 (use display.elem[] or display.elem_by_id[]
to access the display element).

The recommended way to access a certain display element is either by its name (as in the example
below), or by its symbolic control ID.
The following code snippet from a script's main loop changes the background colour of a button,
using an if..then..else condition :

while(1) // endless loop for the script's MAIN THREAD

 if(iStartTest) then
 if(ReadIniFile("memory_card/IniDemo1.ini")) then
 display.elem["ReadIni"].bc = clGreen; // paint the button with a GREEN
background

© MKT / Dok.-Nr. 85122 Version 2.2 34 / 220

../help/progt_01.htm#display_elements_with_control_ID
../help/progt_01.htm#display_element_name

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 else // could NOT read the ini-file :
 display.elem["ReadIni"].bc = clRed; // paint the button with a RED
background
 endif;
 iStartTest := FALSE;
 endif;

 // ... insert other main task activities here ...

 wait_ms(50); // give the CPU to someone else for 50 milliseconds
endwhile; // end of the main thread loop

The above code was taken from the 'Ini Files' demo, which is contained in the subdirectory
'programs/script_demos' after the installation of the programming tool. Many more examples can be
found in chapter 5.

© MKT / Dok.-Nr. 85122 Version 2.2 35 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 4. Language Reference

The scripting language was once a subset of the BASIC programming language (without line
numbers), and was later modified to be more 'PASCAL'-like. Some elements were borrowed from
other programming languages. From PASCAL, BASIC, and IEC 61131 "Structured Text", this
language inherited the case-insensitivity, so it's up to you to write keywords in upper or lower case
(but please don't mix upper and lower case for keywords, and don't use "Camel Casing" if it makes
no sense..). If there are CamelCased symbols in your program, they should be self-defined
variables, data types, self-defined functions or procedures but not standard language keywords .
Top-level keywords of the script language are (just for example, but also as a quick reference):

if..then..else..endif for..to..next while..endwhile repeat..until
select..case..else..endselect

proc..endproc func..endfunc

const..endconst var..endvar typedef..endtypedef

addr append float int local ptr string

int string CAN cop.(CANopen) display. file. gps. inet. Math. system.

time. trace. tscreen. wait_ms wait_resume

More keywords can be found in the alphabetically sorted list.

For compatibility with the original BASIC-like language, colons (:) can be used to separate
commands in one line. But we recommend to use only one command (function call, variable
assignment, loop statement, etc) per line. Using one line per command also simplifies debugging,
because you can set breakpoints only at the begin of a line.

The hash mark (#) at the begin of a line marks the begin of a compiler directive. For example, the
compiler can be instructed to accept only declared variables (directive #pragma strict).

To mimick more 'modern' programming languages, a semicolon can also be used to separate two
commands in one line. But unlike "C", Pascal, and Java, the end of a line has a syntactic meaning (it
also separates two commands or statements), so in most cases, neither the colon nor the semicolon
should be necessary if you follow the style recommended above ... use ONE LINE PER
STATEMENT . A few examples with the recommended style follow below.

Leading spaces have no syntactic meaning for the compiler, but you should generously use leading
spaces (indentations) to increase the readability of your code. For example, with a bit of
imagination it's obvious what this code does :

Sum := 0.0; // calculate PI ...
for Loop:=1 to 10000 // do 10000 iterations
 if (Loop & 1) <> 0 // odd or even loop count ?
 then Sum := Sum + 4.0 / (2 * Loop + 1); // odd

© MKT / Dok.-Nr. 85122 Version 2.2 36 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 else Sum := Sum - 4.0 / (2 * Loop + 1); // even
 endif;
next Loop;
print("PI is roughly ", Sum);

Suggestions about the coding style (not mandatory, but the highly recommended by the author):
• Use at least two space characters per indentation level.

Any function body (between 'proc' and 'endproc') shall be indented, too.
Only the 'main code' (typically at the begin of the script, executed immediately after
program start), and the keyword pairs const /endconst , var /endvar , proc /endproc ,
func /endfunc shall not be indented (because they always sit at the script's 'main level' -
there are no nested functions as in Pascal).

• It's not necessary to write keywords in upper case. Keywords were sometimes written
in upper case in this document, when it seemed important to mark them as such
(because bold or italic characters don't work in a plain text file). Since the script editor
can automatically highlight keywords, the author of the script language uses keywords
in lower case, and only user-defined CONSTANTS in UPPER CASE . This is what
most "C" programmers prefer.

• Don't ever use tabs in sourcecode, because different editors use different default
settings (some editors use 8 characters per tab, some use 4, others 3 by default, etc...),
so using tabs in sourcecodes will sooner or later turn everything into a mess, which
can often be seen in open-source projects. Use two or three spaces per nesting level,
and align the 'ending' statement (like next, until, endif) to the same column as the
matching 'beginning' statement (like for, repeat, if) as in the example shown above.
If you consider comments and indentation (leading spaces to emphasize nesting) a
useless waste of time, stop developing software.

The following subchapters explain most of the script language's syntax elements. Special
commands, keywords, and runtime library functions are explained later.

See also: Keyword list, Operators (numeric), User-defined Functions and Procedures, Program
Flow Control, Other Functions and Commands .

 1 4.1 Numbers and numeric expressions
Numbers are integer by default. Their notation is usually decimal, but hexadecimal and binary is
also possible (see examples below). Numbers may be integer or floating point. A number's data type
is stored internally, along with the value.

• 1234 is an integer number in decimal notation (which is the default)

• 1234.0 is a floating point number (because the compiler recognizes the decimal point)

• 0xABCDEF is an integer number in hexadecimal notation (thanks to the "0x" prefix)
• 0b10000001 is an integer number in binary notation (the prefix "0b" means "binary").

Use integer numbers wherever possible. But, if an expression uses some floating point variables as
input, you should also use floating point numbers (constants) because the compiler will emit
floating point constants as such if it's obviously a floating point notation. This eliminates type

© MKT / Dok.-Nr. 85122 Version 2.2 37 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

conversions at runtime, and makes the script run faster. Example (with Sum being a floating point
variable, and Loop an integer):

 Sum := Sum + 4.0 / (2 * Loop + 1);

does not calculate the same result as

 Sum := Sum + 4 / (2 * Loop + 1);

Look at the right term in the above formula: It contains only integers. When the compiler produces
bytecode for the right term, it will use integer numbers because they were much faster on older
target systems (without hardware floating point unit). This also includes the DIVIDE instruction : If
both operands are integers, the division will be an integer, too. If one, or both, inputs for the
DIVIDE operation are floating point numbers, the division itself will be performed using a (slow)
floating point operation. If you definitely need a floating point operation, use floating point
numbers (constants) as in the upper example shown above. BTW, the example is taken from the
application 'ScriptTest2.cvt', contained in the installation archive, which calculates the number 'PI'
using the Gregory-Leibniz formula.

To convert 'binary data' (like received CAN messages) from a sequence of bytes into floating point
numbers, use functions like BytesToFloat, BinaryToFloat, or BytesToDouble.

See also: Numeric functions, "Math", DSP.

 2 4.2 Strings

String constants must be enclosed in double quote characters, as in most programming languages
(except Pascal).
To declare a variable as a string, use the keyword string, or (if you prefer not to declare variables as
in ancient BASIC dialects), use the 'dollar suffix' ($) to let the compiler know that your variable is a
string.
In most places where the compiler expects strings, you may also use a string expression like A$+"
some text "+B$.

Example (using a properly declared string variable)

var
 string MyString;
endvar;
...
 MyString := "This is another string";

For certain applications, static byte-arrays (i.e. in global script variables) can be treated like strings.
Beware, the character encoding gets lost then, and the receiver (or reader) of the string doesn't know
if the characters must be treated as ASCII, "ANSI", or UTF-8. Example:

 TP_Transmitter.buffer := "Test string sent via ISO 16765-2 'TP' .";
 TP_Transmitter.iTotalSizeInByte := strlen(TP_Transmitter.buffer);
 IsoTP_StartSending(&TP_Transmitter); // start sending an ISO-TP
message

© MKT / Dok.-Nr. 85122 Version 2.2 38 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

(in that example, TP_Transmitter.buffer is a struct component declared as 'BYTE
buffer[1024]', and TP_Transmitter.iTotalSizeInByte is the total 'payload size', measured in
bytes.
When copying the string, an trailing zero-byte is appended, which strlen() does NOT count as
a character. Beware, when copying strings into static arrays this way, the string may be
truncated.)

The script language contains a few string processing functions, like itoa ("integer to ASCII"), hex
(integer to hexadecimal ASCII), chr (turns an ASCII value into a single-character string) .

 2.1 4.2.1 Strings with different character encodings
For simple string variables (not strings in arrays or structs), the character encoding of a string may
vary, depending on the assigned value.
For simple string variables, the 'string' data type contains internal flags which specify the encoding.
For example, if a string was read from a Unicode text file (using the function file.read_line), the
string will contain a sequence of UTF-8 encoded characters. This way, the character encoding type
is passed along with the string when calling subroutines and functions, or when assigning the string
to another variable. If necessary, a string's character encoding can be queried as in the following
example :

select(char_encoding(MyString))
 case ceDOS : // string contains "DOS"-characters (codepage 850)
 ...

 case ceANSI : // string contains "ANSI"-characters (Windows-
1252)
 ...

 case ceUnicode : // string contains "Unicode"-characters
(encoded as UTF-8)
 ...

 case ceUnknown : // the string's character-encoding is unknown
 // This means the encoding type has not been specified,
 // or doesn't matter because all characters in the string
 // have code values below 128
 // (in that case "DOS", "ANSI", and Unicode are almost
identical)
 ...

endselect;

Note: Just because the script language supports Unicode (to be precise, UTF-8 encoded strings)
doesn't mean your application will be able to render those characters on the display ! The fonts used
by MKT's LCD driver date back from the days of DOS, and only contain glyphs for the 255
characters defined in the old 'DOS' character set (Codepage 850) !

© MKT / Dok.-Nr. 85122 Version 2.2 39 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

When showing an UTF-8 encoded string on the display, the firmware will try to find a match for the
Unicode 'code point'. Thus, at least the common western characters (like German 'Umlauts') will
appear correctly on the display, regardless of the string's character encoding type (ceDOS, ceANSI,
ceUnicode).

Arrays and struct members of type 'string' are always stored as UTF-8 internally, because there are
no individial character-encoding flags stored in memory for each array element.
If, for example, a 'DOS'- or ANSI-encoded string is assigned to an array element, all characters with
codes > 127 will be converted to UTF-8 sequences automatically. Thus, when reading those strings
from the array, they have the encoding type ceUnicode !

If necessary, the character encoding of string literals (i.e. string constants in the script sourcecode)
can be specified by the following single-lowercase-letter prefixes. When not speficied, the compiler
may decide to use ANSI, or (more likely) UTF-8:

• a "Text"
"ANSI"-encoded characters (precisely: Windows CP-1252, 8 bits per character)

• d "Text"
"DOS"-encoded characters (precisely: DOS Codepage 850, 8 bits per character)

• u "Unicode-Test"
Unicode (precisely: characters encoded in UTF-8, with a variable number of bytes per
character)

Note: The double-quote character, which marks the begin of a string constant (literal), must follow
immediately after the prefix character (a,d,u) !

Example (assigns a Unicode string literal to a string variable) :

 MyString := u"Falsches Üben von Xylophonmusik quält jeden
größeren Zwerg.";

Wherever possible, special characters (as in the german pangram above) will be translated into their
proper encoding by the compiler.
The character encoding of the script sourcecode is assumed to be "ANSI" (Windows CP-1252), not
"DOS"-encoded characters !
This may change in the far future, if the script editor in the programming tool can be convinced to
emit its content in UTF-8 instead of Windows CP-1252.
Until then, use Unicode escapes (after backslash-u) for all characters which you don't find on your
PC's keyboard. Example:

 MyString := u"Falsches \u00DCben von Xylophonmusik qu\u00E4lt
jeden gr\u00F6\u00DFeren Zwerg.";

More examples can be found in the 'String Test' application.

 2.2 4.2.2 String usage and storage format

Most characters in a string are internally stored as an 8-bit number. A zero-byte marks the end of a
string (but you don't need to care about this, because the compiler adds the zero automatically when
encountering a string constant in the sourcecode). Depeding on the string's character-encoding type,
characters with a code value above 127 (!) may occupy one or more bytes in memory. 8-bit "DOS"

© MKT / Dok.-Nr. 85122 Version 2.2 40 / 220

http://en.wikipedia.org/wiki/Windows-1252

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

or "ANSI" characters are stored as such in memory. A few of those 255 possible codes are reserved
for special control characters, line "carriage return" and "new line" - see 'backslash sequences'
further below. In addition, strings can be stored as UTF-8 sequences in memory.

During runtime, string memory is dynamically allocated from a common memory pool. The amount
of memory required depends on the number of strings used in your application, and their individual
lengths. For example, consider an array of structures, declared as :

typedef tStringTableEntry = // user defined data type..
 struct // structure for an entry in a "string table"
 int valid; // 0: invalid or "deleted" entry, 1:valid
 int iRefNo; // string reference number (integer)
 string sInfo; // the string itself (any length!)
 endstruct; // end of a structure definition
endtypedef; // end of type definitions

var // declare GLOBAL variables, here: an array of structs
 tStringTableEntry StringTable[1000];
endvar; // end of variable declarations

Initially, each tStringTableEntry only occupies 12 bytes (2 * 4 bytes for the integers, plus 4
bytes for a pointer to a string object in some other memory area).
Later, when the sInfo entries in the 'StringTable' array are filled (and the strings are not
"empty" anymore), each string will require additional memory .
In other words, the amount of memory used by your script may increase at runtime. Thus, to make
sure your application doesn't run out of memory later, consider how many strings may be used by
your application at runtime at worst case, and how long each of those strings may grow (because
the compiler doesn't know this). Let your application run in the programming tool's simulator, and
test every function in your script. When finished, examine the peak memory usage in the debugger,
and make sure the 'data memory' usage isn't critically close to the maximum.

 2.3 4.2.3 String constants with special characters

The compiler doesn't know for what a string will be used later. It doesn't know anything about
languages, fonts, character sets. For this reason, it doesn't try to convert any special characters
(especially not German umlauts, etc). If you know the string will be displayed on the LCD screen
later, using one of the DOS-compatible fonts, replace the Umlaut (etc) with the hexadecimal
equivalent (backslash x followed by two hex digits, in the double-quoted string constant), or use
the prefix 'd' ("DOS") before the double-quoted string to let the compiler convert the string from the
sourcecode format (which is usually 'ANSI') into DOS.

Examples:
Test$:= "\x99rtliche Bet\x84ubung \x9Abelkeit"; // string with hex codes for Ö, ä, Ü if a
'DOS font' is used for rendering
Test$:= d"Örtliche Betäubung kann Übelkeit hervorrufen"; // string converted into 'DOS
characters' by the compiler

© MKT / Dok.-Nr. 85122 Version 2.2 41 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Hexadecimal codes for certain 'special' characters in DOS fonts (as used in most of MKT's
programmable displays) :

Hex.
Code

Character
(here: ANSI)

Name

84 ä a diaeresis

94 ö o diaeresis

81 ü u diaeresis

8E Ä A diaeresis

99 Ö O diaeresis

9A Ü U diaeresis

DF ß German sharp s

.

.
Beware: The script language isn't aware of the font used to render a character on the screen. The
compiler doesn't know what 'will happen' with a string later (if you will print it on the screen later,
write it into a file, etc). Thus, \x94 may print a German 'ö' (o diaeresis, or "o Umlaut") on the
screen, but only if the font used to render the string is the old-fashioned 'DOS font', aka 'codepage
437' or 'codepage 850'.

A complete 'DOS' character table ("Codepage 437") can be found here . Rows and columns use
hexadecimal numbers, making it very easy to find the 8-bit hex code for any desired 'special'
character. The Text Screen example uses some of those characters to draw lines and boxes on the
text screen.

 2.4 4.2.4 Strings with backslash sequences
Besides the sequence \x to insert a special character (by its hexadecimal code), the following
backslash sequences have a special meaning in the script sourcecode:

\\
Inserts a *single* backslash in the string .

\r
Inserts a carriage return character (aka CR, chr(13)) .

\n
Inserts a new line character (aka "linefeed", chr(10)) .

\x
Inserts an 8-bit character by its hexadecimal code (not Unicode!).
See details in chapter 'string constants with special characters' .

\u
Inserts a Unicode "character" (code point), specified as 4-digit hexadecimal value.
The compiler (!) replaces the unicode value with an UTF-8 sequence.
Note that only very few of those 1114112 possible Unicode code points can later be rendered
on the display !
Details in chapter 'strings with different character encodings' .

\"

© MKT / Dok.-Nr. 85122 Version 2.2 42 / 220

http://en.wikipedia.org/wiki/Code_point
http://en.wikipedia.org/wiki/Unicode
../help/DOS_chars_CP437_hex.png

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Inserts a double quotation mark in the string (without a backslash, the double quote is the
string delimiter, so it cannot be a part of the string itself) .

Don't confuse the backslash sequences inside the script language (listed above) with the backslash
sequences in the display interpreter ! The simple control characters (like 'new line', etc) have the
same meaning in both types, but the internal functions are entirely different !

See also: Invoking script functions from a backslash sequence on a display page

 2.5 4.2.5 String processing
Strings can be concatenated with the '+' operator (formal "addition"). Example:

 var
 string Info; // Declaration of a string variable
 endvar;
 Info := "First part";
 Info := Info + " second part";

The following string processing functions had been implemented at the time of this writing (2013-
11-05) :

append(<destination>, <source> [, <index_variable>])
Appends a string ('source') to the end of another string ('destination'), or to an array of bytes.

Example 1: Appending a string to another string

 var
 string s1,s2; // declare two string variables
 endvar;
 s1 := "Don't mix apples";
 s2 := " and oranges";
 append(s1,s2); // Append s2 to s1, result in s1 : "Don't mix
apples and oranges"
 print(s1); // show result on a text panel

In the example above (with destination = string), the third function argument ('index') is
neither required nor recommended.

Example 2: Appending multiple strings to a 'binary block' (array of bytes)

 var
 byte TxBuffer[1024]; // declare an array of bytes
 int TxByteIndex; // index variable for 'TxBuffer'
 endvar;

 TxByteIndex := 0; // begin filling TxBuffer[0] here
 append(TxBuffer, "First string.\r\n", TxByteIndex);
 // Note: append() will increment TxByteIndex by the
 // NUMBER OF BYTES appended to the buffer !
 TxBuffer[TxByteIndex++] := 0x00; // append a ZERO BYTE as string-
end-marker
 append(TxBuffer, "Second string.\r\n", TxByteIndex);
 TxBuffer[TxByteIndex++] := 0x00; // append another ZERO BYTE

© MKT / Dok.-Nr. 85122 Version 2.2 43 / 220

../help/progt_01.htm#backslash_sequences
../help/progt_01.htm#backslash_sequences

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 append(TxBuffer, "Third string.\r\n", TxByteIndex);
 StartSendingBlock(TxBuffer, TxByteIndex/*nBytes*/); // user-
defined procedure

In this example, the 3rd function argument ('index_variable') is an integer variable which is
incremented by the number of bytes appended to the destination in each call of the 'append'
command. The array 'TxBuffer' is filled with multiple strings, which are delimited by a ZERO
byte (as in the "C" programming language).
Because in the script language, a zero-byte also marks the end of a string, the trailing zero
cannot be part of the 'netto' contents of the string itself. Thus, in the example shown above,
the string delimiter is appended to the binary data block with the command
 TxBuffer[TxByteIndex++] := 0x00;
The post-increment-operator '++' increments 'TxByteIndex' by one after the access.
Concatenating strings via append() is faster than 'adding' them (i.e. use append(s1,"Hello")
instead of s1 := s1+"Hello"), because in many cases append() doesn't need to free and re-
allocate a block of memory for the string (due to the internal memory management, which
allocates strings in chunks of N times 64 bytes, leaving a reserve of up to 63 characters in
memory).

chr(N)
Converts an integer code (N, 0..255, usually from the "DOS" character set) into a single-
character string.
If 'N' is above 255, it is assumed to be a UNICODE value, but you should better use
unicode_chr(N) for that purpose.
Example: chr(32) returns the 'space' character.
If 'N' originates from a stream of characters in ANSI code (e.g. from a serial port / terminal),
use ansi_chr() instead.

ansi_chr(N)
Converts an integer code (N, 0..255, usually from the "DOS" character set) into a single-
character string.
If 'N' is above 255, it is assumed to be a UNICODE value, but you should better use
unicode_chr(N) for that purpose.
Example: ansi_chr(176) returns the 'degree'-character aka 'ring' (°), as in '°C' for 'degrees
Celsius'.

unicode_chr(N)
Almost the same as chr(N), but unicode_chr(N) converts an integer code (N, 0..0x10FFFF)
into a single-character unicode string, regardless of whether this character can be
rendered on the screen or not ! Example: unicode_chr(0x20AC) returns a string with the
internal representation (which is UTF-8) of the 'Euro Sign' character.

CharAt(string s, int char_index)
Returns the code of the N-th character in the string s. As usual, the index starts counting at
zero for the first character. The result is a 32-bit Unicode value, which, for 'normal' western
characters, is the same as the ASCII value (codes 1 to 127). The 'CharAt' function is aware of
the string's character encoding type, and supports UTF-8. Note that for UTF-8, there is a big

© MKT / Dok.-Nr. 85122 Version 2.2 44 / 220

../help/ansi_chr

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

difference between the 'character index' and the 'byte index'. CharAt always treats the 2nd
parameter as a character index, not a byte index. If <char_index> is negative, or exceeds the
length of the string, CharAt returns zero which means "there is no character at this index".

char_encoding(string s)
Returns the string's character encoding type. The result will be one of the following constants:
ceDOS ("DOS"-characters), ceANSI ("ANSI"-characters), ceUnicode, or ceUnknown .

ftoa(float value, int nDigitsBeforeDot, int nDigitsAfterDot)
"floating-point to ascii" .
Converts a floating point value (1st argument) into a decimal string, using the specified
number of digits 'before' and 'after' the decimal dot. Example:
 Info := "Tire Pressure="+ftoa(fltTirePressure, 4, 1)+"
bar";
If the 'number of digits before the decimal dot' is larger than required, the string returned by
ftoa() will be padded with leading spaces (not zeroes). If the 'number of digits after the
decimal dot' is larger than required, the string returned by ftoa() will be padded with trailing
zeroes (not spaces). If the 'number of digits after the decimal dot' is zero, the decimal point
('.') will also be omitted.

itoa(int value [, number of digits])
"integer to ascii" .
Converts an integer value (1st argument) into a decimal string, using the specified number of
digits (2nd argument). Example:
 Info := "Timestamp="+itoa(system.timestamp,8);
If the value doesn't fit into the specified number of digits, the result (string) will only contain
the least significant digits. Example:
 itoa(1234,2) returns 24 (as string), not "1234" !
If the number of digits is not specified, or zero, itoa will produce just as many digits as
required (without leading zeroes).
See also: ftoa, which emits leading spaces instead of zeroes.

atoi(string value [, int number_of_digits [, int start_index]]),
atof(string value [, int number_of_digits [, int start_index]])

"ascii to integer" , "ascii to float" .
Converts a decimal string into an integer or floating-point number (a numeric value), using
the specified number of digits (2nd argument, optional), or the entire string.
An optional third argument can be used to specify the start index (=index of the first character
to be parsed).
If the optional parameter 'start_index' is passed by reference (using the address-taking
operator before an integer variable), then that variable will receive the zero-based index of the
next character after the parsed number.
Examples:
 atoi("1234567"); // returns 1234567 as an integer
value.
 atoi("1234567",3); // returns 123 (parse 3 digits,

© MKT / Dok.-Nr. 85122 Version 2.2 45 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

beginning at char-index 0).
 atoi("1234567",3,2); // returns 345 (parse 3 digits,
beginning at char-index 2).
 start_index := 0; // begin parsing here (start_index must
be declared as int somewhere)
 value := atoi("1234567",10, &start_index); // increments
start_index by 7 (# parsed chars).
Indices start counting at ZERO, not ONE. The first character in a string is at index zero.
Both atoi and atof recognize a trailing 'minus' character for negative numbers.

hex(int value, int number_of_digits) alias HexString(..)
Converts an integer value (1st argument) into a hexadecimal string, using the specified
number of digits (2nd argument)

BinaryString(int value, int number_of_digits)
Converts an integer value (1st argument) into a binary string, using the specified number of
digits (2nd argument)
Example:
BinaryString(0x12345678, 32)returns 00010010001101000101011001111000
as string.

strlen(string s)
Returns the number of characters in the string (not 'the number of bytes', especially not for
UTF-8).
Example:
strlen("How long is this string ?") returns 25 .

strpos(string haystack, string needle[, int startindex]),
stripos(string haystack, string needle[, int startindex]),
strrpos(string haystack, string needle[, int startindex]),
strripos(string haystack, string needle[, int startindex]),
strpos2(string haystack, string needle[, int start_index])

Finds the first (or last) occurrence of a search string (needle) in a larger string (haystack),
beginning at the optionally defined start-index (zero-based character index).
The functions strpos and strrpos are case-sensitive ('a'..'z' are different from 'A'..'Z'),
stripos/strripos are not (i="insensitive").
The functions strpos and stripos try to find the first occurrence of the needle, strrpos/strripos
try to find the last (r="reverse").
The return value is a character index (index zero = first character in 'haystack'), or a negative
integer if the needle couldn't be found in the haystack.

In contrast to strpos(), strpos2() doesn't return the character index of the needle's first
character within the haystack, but the index of the next character after the needle. In other
words, strpos2() skips the needle if it finds one. With strpos2(), a parser can easily process the
trailing string as shown in the examples further below.

© MKT / Dok.-Nr. 85122 Version 2.2 46 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

If the 3rd argument (start index) is omitted, strpos/stripos start searching at index zero, i.e. at
the first character in the 'haystack'. This can be used for a simple string parser. Example:
 haystack := "This test string is 38 characters long";
 needle := "is"; // string to be found in the haystack
 i := strpos(haystack,needle); // find the first needle
(result: i=2)
 i := strpos(haystack,needle,i+1); // find the next needle
(result: i=17)
After finding the keyword, the trailing value can be converted to int or float using atoi(ascii-
to-integer) bzw. atof(ascii-to-float):
 i := strpos2(haystack,"VBat="); // find index of the next
char AFTER the needle
 if(i>0) then // found the needle (keyword) in the haystack,
parse the following value
 iValue := atoi(haystack, 5/*digits*/, i/*start*/); //
parse number after keyword
 endif;
Because atoi and atof also accept the start index as optional (3rd) parameter, it's unnecessary
to copy strings in the example shown above.

substr(string s, int start [, int length])
Returns a sub-string of the first argument, beginning at the zero-based character index 'start',
and consisting of 'length' characters.
If the parameter 'length' is omitted, the returned string (result) includes all characters from
'start' up to (and including) the end of the source string.
If 'length' is specified and positive, the result will never have more than 'length' characters.
If 'start' or 'length' are negative, the result will be an empty string.

ParseInteger(string value [, int max_digits [, int
start_index]])

Alias for "C"-function atoi() ("ASCII to integer"), with a few extensions.
If the argument 'start_index' is not specified, parsing starts at the first character (same as start-
index zero).
If the argument 'max_digits' is also not specified, parsing ends after the last digit, end-of-
string, etc.
If the optional parameter 'start_index' is passed by reference (using the address-taking
operator before an integer variable), then that variable will receive the zero-based index of the
next character after the parsed number.
This also applies to the other string-parsing functions listed further below. For an example,
see ParseFloat().

ParseFloat(string value [, int max_digits [, int start_index]])
Alias for "C"-function atof() ("ASCII to float"), with a few extensions.
Similar to ParseInteger(), but returns a floating point value, and accepts fractional parts after a
'.' (dot).
Example:
 sLine := "U=23.4V T=22.7°C";

© MKT / Dok.-Nr. 85122 Version 2.2 47 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 start_index := strpos(sLine, "U=");
 Ubat := ParseFloat(sLine, 10/*max_digits*/,
start_index+2);
 start_index := strpos(sLine, "T=");
 Temp := ParseFloat(sLine, 10/*max_digits*/,
start_index+2);

ParseHexString(string value [, int max_digits [, int
start_index]])

Inverse to HexString. For an explanation of parameter 'start_index', see atoi().
If the string (value) begins with 0x (prefix for 'hexadecimal' as in "C" or Python), these two
characters will be skipped. They are also included in the count of 'max_digits' just like any
other character 'consumed' by the parser.

ParseBinaryString(string value [, int max_digits [, int
start_index]])

Inverse to BinaryString. For an explanation of parameter 'start_index', see atoi().
If the string (value) begins with 0b (prefix for 'binary' as in Python), these two characters will
be skipped. They are included in the count of 'max_digits' just like any other character
'consumed' by the parser.

string(value [, number of characters])
"Convert whatever it is into a string, using the default format".
If the value (first argument) is a byte array, it will be treated like an UTF-8 encoded string.

string(source_array, iFirstByte, iMaxBytes)
This string-constructor function also converts the contents of a byte array (first argument),
beginning at the specified zero-based array index (second argument), with a maximum of N
bytes (third argumet), into a string of characters (return value).
Also in this case, the content of the byte array is assumed to be UTF-8 encoded. Example:
 s := string(b256ReceivedData, iBeginOfPayload,
iPayloadLength); // inefficient call-by-value

As already mentioned in chapter 4, large objects (like structs and arrays) should better be
passed as pointer ('call by reference' instead of 'call by value'). This way, the unnecessary and
wasteful duplication of the array (to 'call by value') can be avoided:
 s := string(&b256ReceivedData, iBeginOfPayload,
iPayloadLength); // more efficient call-by-reference

More examples for the string processing functions listed above can be found in the 'String-Test'
application .

< To Be Completed >

See also : Keyword list , file I/O, table of contents .

© MKT / Dok.-Nr. 85122 Version 2.2 48 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 3 4.3 Constants

 3.1 4.3.1 Built-in constants

A few constants are hard-coded inside the script compiler. Don't rely on the actual value (that's why
we don't show them in the table below).

For the sake of readability, most constants are prefixed with a lower-case 'c' (for constant). Despite
that, the script compiler is case-insensitive !

Constant name Description

.

__LINE__
Retrieves the current sourcecode line number during compilation, similar as in "C".
Example: trace.print("Problem in line ", __LINE__ , " :\r\n");

arLeftScale,arRightScale,
arTopScale,arBottomScale,
arCurve1, arCurve2

'area codes', used in touchscreen event handlers for diagrams .

ceDOS
Character encoding type for strings with 'DOS' characters, actually DOS 'Codepage 850' .
For historic reasons, this is the encoding used by most of MKT's build-in bitmap fonts.

ceANSI Character encoding type for 'ANSI' characters, in fact Windows 'CP-1252' .

ceUnicode Character encoding type for Unicode strings.

ceUnknown Dummy character encoding type for strings without 'special characters'.

clBlack
black colour (don't care about the actual value, it may be hardware dependent) .
Like the colour constants below, this colour can be used in the setcolor-command.

clWhite bright white . This is the second standard colour available on ALL targets.

clBlue pure, saturated blue

clGreen pure, saturated green

clRed pure, saturated red

clLtBlue Light Blue

clLtGreen Light Green

clLtRed Light Red

clCyan cyan colour (mixture of blue and green)

clMagenta
red-purple, aka "fuchsia", sometimes called "pink" (which in fact it's not).
Note: If this is not the kind of magenta/fuchsia/pink/purple/violet you were looking for,
 use the rgb-function to 'compose' the colour as a mixture of red, green, and blue.

clYellow yellow colour

clOrange Orange

clBrown Brown

clDkGray dark gray / dark grey :o)

clLtGray light gray

clTransparent Dummy colour value, usable as back- or foreground colour of certain display elements.

cRedrawAll (etc) "Redraw All". Used, for example, to redraw a graphic 'table' on the screen.

csOff Cursor Shape "Off" (text cursor invisible)

© MKT / Dok.-Nr. 85122 Version 2.2 49 / 220

../help/table_01.htm#tTable_RedrawFlags
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Windows-1252
http://en.wikipedia.org/wiki/Code_page_850
../help/diagr_01.htm#area
../help/trace_print

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

csUnderscore Cursor Shape "Underscore" (text cursor visible, displayed as an underscore)

csSolidBlock Cursor Shape "Solid Block" (text cursor visible, displayed as a filled block)

csBlinking Cursor Style "Blinking" (slowly flashing text cursor)

.

cCanRTR RTR-flag (Remote Transmission Request) for the CAN bus

cCANStatus... CAN Status Flags. For details, see CAN.status

cCanIdBit_Bus2

Bitmask (bit 30) for the CAN-bus-number, encoded as part of tCANmsg.id .
When set, a CAN message was received from (or will be sent to)
the second bus - unless cCanIdBit_Bus3 is also set.

Actually, cCanIdBit_Bus2 (bit 30) and cCanIdBit_Bus3 (bit 31)
form a two-bit number to encode up to four different buses in the "CAN message id":
 cCanIdBit_Bus2 not set, cCanIdBit_Bus3 not set : first CAN interface.
 cCanIdBit_Bus2 set , cCanIdBit_Bus3 not set : second CAN interface.
 cCanIdBit_Bus2 not set, cCanIdBit_Bus3 set : third CAN interface.
 cCanIdBit_Bus2 set , cCanIdBit_Bus3 set : fourth CAN interface or LIN-bus.
An example is in the "CAN gateway" demo (CANgate1.cvt).

cCanIdBit_Bus3
Bitmask (bit 31) for the CAN-bus-number, encoded as part of tCANmsg.id .
Details above.

cCanIdBit_LIN Bitmask (bit 31+30) to use a CAN-"Message" on "CAN4" as a LIN bus frame .

cCanIdBit_Extd
Bitmask (bit 29) for the CAN-bus-number, encoded as part of tCANmsg.id .
When cleared, the lower 11 bits of the CAN-ID field are an 11-bit CAN message ID.
When set, the lower 29 bits of the CAN-ID field are a 29-bit CAN message ID.

cCanTx_Normal,
cCanTx_NoWait

Options for CAN transmission via can_transmit.

.

cFileAttrNormal
File attribute : "Normal file, no special attributes".
Used when reading 'disk' directories in tDirEntry.attributes.

cFileAttrRdOnly Read only attribute (file may be read but not written)

cFileAttrHidden Hidden file (at least on FAT file systems)

cFileAttrSystem System file (don't touch this..)

cFileAttrLabel Not a real file but the 'disk volume label' (used by FAT file systems)

cFileAttrDir Directory

cFileAttrArch Archive. Only used on FAT file systems (DOS)

cFileAttrDevice Not a storage medium but an I/O device (serial port, etc)

cFirmwareCompDate firmware compilation date as a string, for example "Aug 25 2010" .

.

cPI number "PI" (approximately 3.141592653589793238462643)

.

cTimestampFrequency frequency of the system's timestamp generator in Hertz ("ticks per second")

© MKT / Dok.-Nr. 85122 Version 2.2 50 / 220

../help/LIN_Bus_01.htm#scripting

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

.

dtUnknown data type code for 'unknown data type'. See notes on typeof()

dtFloat data type code for 'floating point'

dtInteger data type code for 'integer'

dtString data type code for 'string'

dtByte data type code for a single 'byte' (8 bit unsigned)

dtWord data type code for a 16-bit unsigned 'word'

dtDWord data type code for 'unsigned 32 bit' aka 'doubleword'. Used for CANopen (-> SDO).

dtColor data type code for a colour (hardware dependent)

dtChar data type code for a 'single character'

dtError data type code for an 'error' (used as return value by certain functions, e.g. cop.sdo)

.

TRUE boolean 'true', actually 1 (one) as integer value

FALSE boolean 'false', actually 0 (zero) as integer value

.

keyEnter, keyEscape, ..
keyF1, keyF2, keyF3, ..
keyLeft, keyRight,
keyUp, keyDown

keyboard codes. Returned by getkey. Used in low-level event handlers.

kmEnter, kmEscape,..
Bitmasks for the keyboard matrix.
Used with system.dwKeyMatrix and OnKeyMatrixChange.

.

NULL Value for an invalid pointer or invalid address.

.

O_RDONLY, file-open-flags. Used in the function file.open .

pfOpen Flag to draw open polygons, for example in display.dia.poly.draw

pfClosed Flag to draw closed polygons, for example in display.dia.poly.draw

pfFilled Reserved for drawing filled polygons (not implemented yet)

pfNoScroll
Flag to draw a polygon that does not scroll along with the 'curves' in a diagram.
So far, only used by display.dia.poly.draw.

sfVectorASC, ... Constant to specify 'String Formats', e.g. when converting tCANmsg to string.

smOff, smCell,
smRow, smColumn

selection mode. Details in the description of the 'table' display element.

.

wmXYZ
'widget messages' or, sometimes, 'windows message'. Used in event handlers.
Allows the script to intercept touchscreen-, and similar low-level system events.

.

© MKT / Dok.-Nr. 85122 Version 2.2 51 / 220

../help/table_01.htm#smCell
../help/diagr_01.htm#display_dia_poly_draw
../help/diagr_01.htm#display_dia_poly_draw
../help/diagr_01.htm#display_dia_poly_draw

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 3.2 4.3.2 User-defined constants

In addition to the fixed constants shown above, you can define your own constants.
This sometimes improves readability, especially when you need the constant's value more than once
in your script.
The keyword 'const' begins a list of constant definitions, the keyword 'endconst' ends such a list.

Each constant is defined using the following syntax :
<constant_name> = <value> ;

or (with the definition of the data type, which may be necessary if the value isn't easily
recognizeable, or ambiguous) :

<data_type> <constant_name> = <value> ;
or (to define a constant array, as described further below) :

<data_type> <constant_name> [array_size] = <value> ;

Example (please note the coding style - indentation between const & endconst) :

const // define a few constants...
 C_HISTORY_BUF_SIZE = 1000; // a decimal integer
 C_CANID_RX_A = 0x333; // a hexadecimal integer
 C_CANID_RX_B = 0x334;
 C_CANID_TX_ACK = 0x120;
endconst; // end of 'constant' definitions

User-defined constants must be defined at the begin of the script (or, at least, before they are used).

Notes:

• Use constants instead of 'magic numeric values' which no-one else (besides you) will
understand,
especially in long select..case statements, and as control identifiers in message handlers.

• Like the names of variables, data types, and similar elements, the name of any constant is
limited to 20 characters.

• A script may use a maximum of 256 different const...endconst blocks. The number of
constants (in these blocks) is only limited by the available bytecode memory, which is target
specific (usually 64 kByte total bytecode memory).

• The old UPT display interpreter can access user-defined script constants without the need to
prefix the constant's symbol by "script." .
But this only works if the symbol does not exceed the maximum length of a display variable
(!), which is usually 8 to 16 characters.
The maximum length of a constant's name in the script itself is virtually unlimited.

4.3.3 'Calculated' constants (constants 'calculated' at compile-time, not at runtime)
To force the evaluation of simple expressions as numeric constants at compile-time, use the hash
character before the constant expression in parentheses.

© MKT / Dok.-Nr. 85122 Version 2.2 52 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Example:

The expression in the command
N := #(1+2+3)

will be evaluated (calculated) at compile-time (by the compiler itself),
In contrast to that,

N := 1+2+3
will be calculated at runtime, resulting in a slightly reduced execution speed.

The compiler's own formula-evaluator is reduced to very basic calculations; it doesn't support
parentheses, it doesn't support different operator precedences; and it only works with integer
constants (symbolic or numeric).

 3.3 4.3.4 Constant tables (arrays)
For some applications, it was necessary to store constants in arrays. One could use an array variable
for this purpose, and fill the array at runtime using a long list of assignments. But there is a more
elegant method to achive this: Constants can be defined like a formal array (and thus be accessed
like an array with "read-only" access at runtime). Such constant-arrays could then be used to
initialize (fill) variables-arrays in a loop, etc; because each element of the array can be accessed
through an index.

Example (actually taken from the 'quadblocks' demo) :

CONST
 int BlockColors[7] = // seven block colours : BlockColors[0...6]
!
 { clBlue, clRed, clCyan, clYellow, clGreen, clMagenta, clWhite
};
ENDCONST;

See also : constants (overview), variable arrays, displaying tables (graphic/control element).

 4 4.4 Built-in and user-defined data types
The script language supports the following three 'basic' built-in data types :

• int (alias "integer") : signed 32-bit integer .
This is the preferred data type for most numeric operations, and also to identify files
(handles) and internet communication endpoints (sockets).

• float : 32-bit 'single precision' floating point. Contains an 8-bit exponent, a 23-bit
mantissa, and a sign bit.
This type can store fractional decimals like 0.12345. In numeric operations, it was slower
than integer due to the lack of a floating point unit in older target systems (without a
hardware floating point unit).
If necessary, a floating point value can be 'constructed' from single bytes (with exponent and
mantissa) via BytesToFloat() or BinaryToFloat(). Floating point numbers can be formatted
into strings via ftoa() ('float to ASCII').

© MKT / Dok.-Nr. 85122 Version 2.2 53 / 220

../help/table_01.htm

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• double : 64-bit 'double precision' floating point. Offers a higher accuracy in numeric
calculations than 'float', at the expense of speed.
Thus this type should only be used if single precision float is not sufficient, for example...

• to store date and time with with high resolution in a single value, e.g. as 'Unix time'
(fractional seconds),

• for calculations using latitude and longitude from precise GPS receivers (with spatial
resolution in the centimeter range),

• to store the value returned by function BytesToDouble(), if you really need the
maximum resolution.

• string : A string of characters. The characters of a string are stored in a separate memory
region, the length may vary during runtime.
(In struct- and array size calculations, a string only seems to occupy four bytes in memory,
but this is just a *pointer* to the actual characters.
Details about the string type are here).

• char : A single character (8 bit). Typically used as an array for strings with a fixed length,
for example when describing data structures (more on that later).

In addition to the above 'basic' types, the following 'simple' types can be used in struct- or array
declarations. When used in calculations (formulas, expressions), they are automatically converted to
integer:

• byte : unsigned 8-bit integer (value range 0 to 255) .
This type occupies one byte in arrays or structures. It's actually the smallest 'integer' type
which can be used for arrays.

• word : unsigned 16-bit integer (value range 0 to 65535) .
Occupies two bytes when used in arrays or structures.

• dword : unsigned 32-bit integer (cannot be converted into 32-bit integer without 'losses' -
only used for storage !) .
Occupies four bytes when used in arrays or structures.

• bool : Similar as integer, but optimized to store the 'boolean' values TRUE (1) or FALSE
(0). Up to date (2019-01) treated like int in expressions and comparisons (e.g. TRUE plus
TRUE gives 2 (two!), which is quite nonsense but 'works' because when testing the result
(e.g. in an if-condition), all that matters is if the integer value is zero or nonzero. Thus, 2
(two) will have the same effect as 1 (TRUE). In future revisions of the script compiler,
arrays of type 'bool' may have a more compact storage format (using only one bit per
element) than arrays of integers.

• tColor : Also an integer, but with the special meaning 'colo[u]r'. Used by some functions,
for example to draw polygons into diagrams. The function rgb(red,green,blue) returns a
tColor 'mixed' from the three colour components.

Type conversions between the 'basic' and 'simple' types listed above are performed automatically
during runtime as necessary. Example:

 var
 int i; // declaration of an integer variable

© MKT / Dok.-Nr. 85122 Version 2.2 54 / 220

../help/diagr_01.htm#polygons

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 float f; // declaration of a floating-point variable
 endvar;

 i := 1234; // integer value assigned to an integer variable
 f := i; // integer value automatically converted to float
 // (in older versions, an explicit conversion was required here, like
 // f := float(i); // convert integer to float, then assign to 'f')

Furthermore, there are a few built-in structure definitions (belonging to the built-in data types),
like :

• tScreenCell : Data type describing one cell of the text screen buffer . Components of
this structure are:
.bChar : character code, usually ASCII or even DOS character set, 0..255
.bFlags : Bit 7 = Flags to force redrawing this cell.
.bFontNr : reserved for future use
.bZoom : reserved for future use
.fg_color : foreground colour (each character cell has an individual colour !)
.bg_color : background colour

• tCanvas : Data type for a 'painting canvas', which the script can use to create graphics at
runtime.
Component names were unknown at the time of this writing (12/2017) - they may be similar
as in HTML5 (width,height,data).
Directly accessable components of a tCanvas:
.width : width in pixels,
.height : height in pixels.
A pointer to a canvas can be used in OnPageUpdate() for Z-ordered painting into the
framebuffer.
See also: Canvas functions and methods for 'painting'.

• tMessage : Data type used by the message handling functions. Components are:
.receiver : identifies the receiver of the message (if any, may be zero for 'broadcast'
messages)
.sender : identifies the sender of the message. If the sender is not a windowed control
(but the system), this value may be is zero.
.msg : message type code (integer). Should be one of the 'wm' ("windows message")
constants, or user defined .
.param1 : first message parameter. Usage depends on the message type.
.param2 : second message parameter. Usage depends on the message type.
.param3 : third message parameter. Usage depends on the message type.
For details about tMessage, see the chapter on message handling .

• tCANmsg : Data type for a single CAN message . Not to be confused with the 'tMessage'
type !
Used (as 'pointer to tCANmsg') as function argument to pass a received CAN message to a
self-defined CAN-receive handler, and (optionally) as function argument for the
can_transmit commmand.

© MKT / Dok.-Nr. 85122 Version 2.2 55 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Components of the data type tCANmsg are:
.id : Combination of bus-number (in bits 31+30), Standard/Extended-Flag (in bit 29),
 and the 11- or 29-bit CAN-ID (in bits 10..0 or 28..0).
.tim : Timestamp (for received CAN messages, this field contains a precise timestamp
filled out by the CAN driver)
.len : Length of the 'netto' data field in bytes. For CAN messages, only 0 (zero!) to 8 bytes
are possible, for CAN FD up to 64.
.b[0] .. b[7] : Data field as byte array (eight times 8 bits)
.w[0] .. w[3] : Data field as word array (four times 16 bits)
.dw[0] .. dw[1] : Data field as doubleword array (two times 32 bits)
.i32[0] .. i32[1] : Data field as array of two 32-bit integer values, little endian
("Intel")
.f32[0] .. f32[1] : Data field as array of two 32-bit floating point values, little
endian
.f64[0] : Data field as array of 64-bit 'double precision' floats, little endian (for CAN,
only one element)
.bitfield[<Bit index of the LSB> , <number of data bits>] : Bit field as in
'can_rx_msg' and 'can_tx_msg'

To simplify communicating via J1939 protocol, the following aliases for parts of the 29-bit
CAN ID were added:
.PRIO: 'Message Priority'. Alias for CAN-ID Bits 28 to 26.
.EDP: 'Extended Data Page'. Alias for CAN-ID Bit 25.
.DP : 'Data Page'. Alias for CAN-ID Bit 24.
.PF : 'PDU Format'. Alias for CAN-ID Bits 16 to 23.
.PS : 'PDU Specific'. Alias for CAN-ID Bits 8 to 15.
.SA : 'Source Address'. Alias for CAN-ID Bits 0 to 7, at least for J1939.
.PGN: 'Parameter Group Number', with up to 18 bits. Alias for 'DP'+'PF'+'PS'.

To simplify communicating via ISO-TP / ISO 15765-2, even more aliases for parts of the
29-bit CAN ID were added.
Beware: ISO 15765-2 supports an awful lot of different addressing modes, and the following
aliases only apply
 to "Normal fixed addressing" (but not "Normal addressing"), and "Mixed addressing with
29 bit CAN identifier" !
.ID28_26 : Bits 28 to 26 in a 29-Bit-CAN-ID. For ISO-TP with "normal fixed
addressing", usually contains 0b110 (binary) .
.ID25_24 : Bits 25 to 24 in a 29-Bit-CAN-ID. For ISO-TP with "normal fixed addressing"
almost always contains 0b00 (binary) .
.ID23_16 : Bits 23 to 16 in a 29-Bit-CAN-ID. For ISO-TP with "normal fixed addressing,
TAtype=physical", contains '218' (decimal).
 Etc, etc, etc. You see, ISO 15765-2 can be awfully complex.
.ISO_TA : ISO 15765-2 'Target Address'. Alias for CAN-ID Bits 15 to 8.
.ISO_SA : ISO 15765-2 'Source Address'. Alias for CAN-ID Bits 7 to 0. Note the
surprising similarity with J1939.

© MKT / Dok.-Nr. 85122 Version 2.2 56 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

If a variable of type tCANmsg, or a pointer to (aka 'the address of') a variable type
tCANmsg, is converted into a string, the result may be a string in Vector ASCII Format
(depends on CAN.string_format). This can be used for logging a moderate amount of CAN
traffic (via script, even in devices without a built-in CAN logger). An example is in the
CAN 'ASCII' Logger demo.
For devices with CAN-FD compatible controllers, the script language also supports the new
tCAN_FD_msg type with up to 64 bytes per data field, in contrast to the older tCANmsg
where the data field was restricted to 8 bytes (aka "classic CAN").

• tTimer : Data type for a programmable timer, with the following components:
.period_ticks : Cycle duration of the timer, measured in 'Ticks' of the timestamp
generator
.expired : >=1 (TRUE) if the timer is expired, otherwise 0 (FALSE)
.ts_next : Current value of the timestamp generator (system.timestamp) at the next
planned expiration of this timer
.running : >=1 (TRUE) if this timer is currently 'running', otherwise 0 (FALSE). See note
further below.
.user : A freely useable 32-bit integer value assigned to this timer,
 for example an event counter or an index (see timer event demo)
The tTimer type is used by the setTimer command, and (passed as 'pointer to tTimer' in the
argument list) when periodically calling a timer event handler.
A timer's "user"-field can also be used to store a pointer to a user-defined data type. This
allows accessing user-defined data inside the timer event handler without global variables.
Note: Trying to start a timer by setting 'timerX.running := TRUE' is meaningless.
 A non-running timer can only be started by calling setTimer.
 Reason: An assignment to 'timerX.running' doesn't reload the timer's counter.

• tTable : Data type for the graphic display of a 'table' (tabular data) on the screen.
An instance of a 'tTable' doesn't contain the data shown in the table itself; it merely connects
a data source (e.g. array, etc) with a visible control element ("\table").
Details about tables (as graphic control- or display elements) are in an extra document
(table_01.htm).

• tDirEntry : Data type for reading directories from a file storage (memory card, etc).
Details in the chapter about reading 'disk' directories.

The keyword 'ptr' or '*' (in addition to the data type) allows the declaration of pointers in der script
language. In contrast to Pascal (etc), 'ptr' is not a data type itself, but must be combined with other
data types, resulting in "typed pointers".

Some of the script language functions may return different data types as their 'return value'. If the
caller needs to examine the type of the result, he can use the typeof operator (operating on the
returned value), and use a select..case statement to implement different processing for each data
type. For this purpose, use symbolic constants like dtFloat, dtInteger, dtString, etc in the case
marks; and declare the variable (for the return value) as 'anytype':

© MKT / Dok.-Nr. 85122 Version 2.2 57 / 220

../help/table_01.htm
../help/table_01.htm

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• anytype : Placeholder for the data type to declare a variable (or function argument) which
can accept 'any type'.
After assigning a certain value to such a variable, the actual type can be examined with the
typeof() operator.
Example:

var
 anytype result;
endvar; // end of variable declarations
 ...
 result := cop.sdo(0x1234, 0x01); // read something via CANopen
(Service Data Object)
 select(typeof(result)) // what's the TYPE OF the returned value ?
 case dtInteger: // the SDO transfer delivered an INTEGER
 ...
 case dtByte: // the SDO transfer delivered a BYTE
 ...
 case dtString: // the SDO transfer delivered a STRING
 ...
 case dtError: // the SDO transfer returned an ERROR CODE
 ...
 endselect;

Besides the data types listed above, own data types can be defined. Example:

 typedef
 tHistoryBufEntry = // this is the name of a user-defined data type
 struct // begin of a user-defined data structure
 int iRefNo; // 1st member: an integer variable
 int iSender; // 2nd member: another integer
 float fUnixTimestamp; // 3rd: a floating point variable
 string sInfo; // 4th member: a string
 int x,y,z; // 5th to 7th: 3 members widh the same type
 endstruct; // end of the user-defined data structure
 end_typedef; // alias endtypedef, end of the data type definition

Notes:

• A block of 'typedefs' may define more than one data type; the semicolon is required to
separate the entries.

• Types must be defined before they can be used to declare variables. Put all typdefs at the
begin of your program.

• using a lower-case 't' as suffix for own type definitions is not mandatory, but recommended
to make the script easier to read.

• components within a type definition must be separated with semicolon (a colon doesn't work
here) .

• The keyword typedef begins a type definition, the keyword end_typedef (alias endtypedef)
ends it.

© MKT / Dok.-Nr. 85122 Version 2.2 58 / 220

../help/dtInteger

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• The keyword struct begins a structure definition, the keyword endstruct ends it.
• Structures can only be accessed component wise. Copying a complete struct to another as in

"C" is not possible (yet?).

At the moment, structures ("structs") can only be composed of basic data types. Nested structures,
and structs with arrays as components, were just future plans (at the time of this writing).

See also: var..endvar to define a list of global script variables.

 4.1 4.4.4 Explicit type conversions (typecasts)

In a few situations, it may be necessary to explicitly convert one data type into another.
The syntax of the typecast-operator is similar as in the "C" programming language:
 (<data type name>)<value to be converted>

As an alternative to the 'typecast'-style shown above, explicit type conversion can also be made 'like
a function call', using the data type as function name, and passing the to-be-converted value like as
argument in parentheses:
 <Data type>(<value to be converted>)
Example from application programs/script_demos/StringTest.cvt :
 s1 := string(n); // default method to convert "anything into a
string"
The type converter function returns a type of the same name (here: string).

Caution: If a 32-bit integer value is converted into a pointer, the script runtime system cannot
(always) find out if the result is valid. Internally, pointers also contain the type of the object, and the
memory class to which they point (code, constant, variables, other data). All this information gets
lost when converting a pointer into a 32-bit integer and back !
That's why explicit type conversions with pointers should be avoided wherever possible !

Rules for converting certain built-in data types into strings:

• int : uses the format also used by itoa() (decimal, sign only emitted when negative)
• tCANmsg : Format configurable via CAN.string_format:

CAN.string_format := sfVectorASC produces a Vector ASC Format compatible string, but
without Carriage Return and New Line.
The timestamp (1st column in a Vector ASC file) can be shifted by CAN.timestamp_offset.
An example is in programs/script_demos/CAN_ASC_Logger.cvt .

© MKT / Dok.-Nr. 85122 Version 2.2 59 / 220

../help/

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

4.5 Variables

The script language supports local and global variables (more on local vs global in the next
chapter).
In addition, the script can also access variables of the display interpreter (defined for the UPT
display application).

As in most programming languages, variables should be declared before using them, but this is not
necessarily the case (for BASIC-compatibility).

Deprecated (not recommended for new developments): For non-declared 'automatic' variables, the
data type was defined by their suffix, like '%' for "integer", '&' for "long integer", '$' for "string",
and '!' for floating point.

Again, using 'non-declared' variables is deprecated, and should be avoided. Instead you should
declare variables properly (with data type) before using them, as explained in the following
chapters.

The directive #pragma strict (in a single line) instructs the compiler to use declared variables only,
and reject the 'deprecated' stuff mentioned above with an error.
Rationale: In the past, those 'automatically created' global variables caused hard-to-find bugs, for
example if a single character was missing when referencing global variable (a "typo"), the compiler
'automatically' created a second variable (with the name used in the "typo").

Hint for developers:
Global variables can be inspected at runtime by the built-in debugger (values listed in the
symbol table) or remotely using the device's embedded web server / 'script' page.
Local variables cannot be inspected that way because they only exist during a function call,
and may exist in multiple instances on the stack.

 4.2 4.5.1 Variable declarations in the script
As mentioned in the previous chapter, any kind of variable should be declared along with its type,
prior to using it.

Hint:
With the option '#pragma strict', variables must be declared before being used.

4.5.1.1 Global script variables

Only variables with user-defined types, array, or anything else which is not a simple variable must
be declared before use. This is what the keyword 'var' is for. After the 'var', place the type name
before the name of the variable. A variable-definition-block must end with the 'endvar' keyword
(alias end_var). Example for the declaraction of some global variables (please note the coding style
- indentation between var & endvar) :

#pragma strict // 'strict' compilation: ANY variable must be declared before
being used !

var // global variables (accessable from all subroutines) ...
 int nHistoryEntries; // declares an integer variable

© MKT / Dok.-Nr. 85122 Version 2.2 60 / 220

http://www.mkt-sys.de/http_server_info/srv_info_01.htm#script

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 tHistoryBufEntry History[100]; // declares an array of tHistoryBufferEntries
 // Note: the indices for an array with 100 entries run from 0 (ZERO) to 99 !

 logged: // The following variables may be recorded by the built-in CAN logger:
 // Signals from J1939 PGN 61443 = "Electronic Engine Controller 2" :
 int AccelPedalKickdown; // SPN 559 "Accelerator Pedal Kickdown Switch"
 int AccelPedalPosition1; // SPN 91 "Accelerator Pedal Position 1"

 private: // The following variables shall NOT be 'logged':
 int iSomeInternalStuff;
 ...
endvar;

Between the keywords 'var' and 'endvar' (i.e. within the declaration of global script variables), the
following attributes can be speficied (they apply to the varibles declared after the attribute):

private:
The subsequent variables shall only be accessable inside the script;
they shall not appear in the selection lists for defining display pages,
and they shall not be logged.

public:
The subsequent variables shall be accessable outside the script, too.
The programming tool will include them in the selection list for defining display pages.

logged:
The subsequent variables may(*) be recorded by the logger which is integrated in certain
devices.
To end a list of 'loggable' variables, use the attribut 'private:'.

(*) The 'logged' attribute doesn't mean subsequent variables are always logged.
In addition, the option + script variables declared as 'logged' must be set in the CAN-
Logger Configuration to log such variables, besides CAN-messages and GPS data.

noinit:
Variables declared with this attribute shall, if possible, not be automatically initialized when
executing a new application via system.exec().
This is only possible with simple data types like int, but not with dynamically allocated types
like string, because before the script is compiled, and when initialising the script runtime is
(re-)initialized, all dynamically allocated memory blocks are freed.

Global variables (regardless of being 'private' or not) can be inspected during runtime by the built-in
debugger (values listed in the symbol table) or remotely using the device's embedded web server /
'script' page.

4.5.1.2 Local script variables

© MKT / Dok.-Nr. 85122 Version 2.2 61 / 220

http://www.mkt-sys.de/http_server_info/srv_info_01.htm#script
http://www.mkt-sys.de/http_server_info/srv_info_01.htm#script
../help/symbol_table
http://www.mkt-sys.de/MKT-CD/Hilfesystem_aus_CAN_Logger_Utility/help/logutl01.htm#logger_config_tab
http://www.mkt-sys.de/MKT-CD/Hilfesystem_aus_CAN_Logger_Utility/help/logutl01.htm#logger_config_tab
../help/canlg_01.htm

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Inside user-defined procedures or functions, local variables can be declared (see following
example). Local variables use the stack for storage, thus they only 'exist' inside the procedure /
function until it returns to the caller. Example:

proc Test
 local int x,y,z; // define three local integer variables

 print(x,y,z);
endproc // local variables (x,y,z) cease to exist at this point

Note that there is no 'endlocal' statement, because LOCAL only applies to the declarations in the
same line, right next to the LOCAL statement. To avoid running out of stack memory (which is
limited to a few hundred entries), try to keep down the amount of local variables in your code.
Especially if such procedures call each other recursively, they will consume a lot of precious stack
memory, because each new call occupies one 'stack frame' (which contain function arguments and
local variables) on the stack.
As soon as a function returns to the caller, its local variables (in fact stack locations) are freed
automatically, and their addresses become invalid.

See also: Debugging ... Stack Display

 4.3 4.5.1.3 Pointers (pointer variables and address operations)
Similar as in the 'C' programming language, variables can be declared as 'Pointers' for special
purposes. But, as in 'C' (and as explained further below), pointers must be treated carefully, because
the runtime system cannot always check if a pointer points (or still points) to a valid location, and if
the type of the pointer is really compatible with the target location.
Similar as in 'C', if a pointer varible (or a reference) shall initialized with an 'invalid' pointer, assign
a NULL-pointer to it.

Example for the declaration of a variable with the type 'Pointer to Integer':
 int ptr myPointerToInteger; // declaration of a typed pointer, preferred

For developers familiar with "C", the keyword 'ptr' may be replaced with a single asterisk (*)
between the basic data type and the name of the variable:
 int * myPointerToInteger; // declaration of a typed pointer, "C"-style

Purposes of pointers may be...

• the manipulation of 'binary data blocks' (which are neither simple array nor described as a
structure)

• passing large data blocks 'by reference' (to avoid lengthy and slow block-copy operations)

When using pointers, ...

• use them with caution !

• make sure the pointer's address is still valid when you de-reference ("use") it

© MKT / Dok.-Nr. 85122 Version 2.2 62 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• beware that the address of any local variable gets invalid, as soon as the function (in which
the local variable was declared) returns to the caller

• thus, only set pointers to global script variables (which remain at fixed addresses throughout
their lifetime)

In many cases, pointers can be replaced by arrays or self-defined data types. Main advantage of a
pointers: In the script language, a pointer only occupies four bytes (32 bits) in memory, thus it can
be easily copied and passed as argument to subroutines (functions, procedures, event handlers; if
necessary using a typecast). Depending on the size of the target object, copying a pointer can be
much faster than copying (duplicating) the object itself.
For linked lists, trees, tables and similar data structurs, pointers are (almost) inevitable.

 4.3.1 Assigning the address of a variable to a pointer

To set a pointer to a certain variable, the address of a variable (or whatever) must be taken. This
can be achieved by the operator function addr:

The term addr(<variable>) returns the address of the variable inside the argument list.

Example for the declaration and initialisation of a pointer, to have it pointing to a 'simple' variable :

var // declare global variables...
 int myIntegerVar; // declare an integer variable
 int ptr myPtrToInt; // declare a variable with a pointer to an
integer value
endvar;

myPtrToInt := addr(myIntegerVar); // assign address of
'myIntegerVar' to pointer 'myPtrToInt'

To de-reference a pointer (i.e. "access the object to which the pointer points"), append a formal
array index in squared brackets after the name of the pointer (unlike "C", there is no '*' operator for
this).
The formal array index is almost always zero, which means 'use the element to which the pointer
points, without offset'.
In contrast to 'real' arrays, the runtime system cannot check the validity of the pointer's formal array
index (=offset), because a pointer only carries a data type along, but not an array size.
Thus, as in "C", the developer is responsible for the validity of a pointer !
If the formal array index is non-zero, it will be multiplied by the size of the pointer's data type, to
calculate the address offset which is added to the address to dereference the pointer (for example,
multiply the offset by four for a 'pointer to integer'). For typeless pointers ("pointers to anything"),
the formal array index must only be zero.
Examples to de-reference a pointer (aka 'access the data via pointer'):

 myPtrToInt[0] := 12345; // pointer access as a formal array,
here: index zero = first array element
 myPtrToInt[1] := 0; // here ILLEGAL, because in the example

© MKT / Dok.-Nr. 85122 Version 2.2 63 / 220

../help/table_01.htm

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

myPtrToInt only points to ONE value !

When accessing a single component of a structure (also a user defined type) via pointer, the pointer
will automatically be dereferenced (unlike "C", where you'd use '->' to access a struct component
via pointer, and '.' to access a struct component directly).
Example to access a component of a structure via pointer:

typedef // define data types and structs...
 tMyStruct = struct
 int iRefNo;
 string sName;
 endstruct;
end_typedef;

var // declare global variables...
 tMyStruct myStruct; // declare a variable of type 'tMyStruct'
 tMyStruct ptr myPtr; // declare a pointer to a 'tMyStruct'
endvar;

myPtr := addr(myStruct); // take address of 'myStruct' and
assign it to pointer 'myPtr'
myPtr.iRefNo := 12345; // actually sets myStruct.iRefNo
myPtr.sName := "Hase"; // (in 'C' this would be myPtr->sName)

 4.3.2 Passing function arguments (parameters) via pointer

When passing arguments to functions, procedures, or event handlers, pointers are often used instead
of passing larger structures directly ('pass by reference' instead of 'pass by value'). The reason is that
a pointer only occupies four bytes in memory, thus a pointer can be passed to a subroutine much
faster than copying an entire structure in memory. More on this in the chapter about User-defined
functions and procedures.

For example, a CAN-Receive-Handler uses a pointer to a CAN message as argument, which
actually points to the CAN message in the system's CAN-receive-FiFo, rather than copying the
entire CAN message to the stack (i.e. call-by-reference, not call-by-value).

Another example where pointers must be used (in a function's argument list) are the event handlers
OnGetCellText, OnGetEditText, and OnSetEditText for the UPT 'table' element, because especially
the OnGetCellText event may be fired many thousand times per second, and thus the text is passed
as a pointer (not as a huge memory copy, see 'out').

In the argument list of certain commands, the 'addr' can be ommitted (for example, if the compiler
knows that the called function always expects 'the address of something').
Experienced "C" developers may use the '&' operator instead of 'addr', for example when calling
can_receive or can_transmit (in the CAN gateway demo):

© MKT / Dok.-Nr. 85122 Version 2.2 64 / 220

../help/table_01.htm#events

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 if (can_receive(&my_can_message)) then ...
The above code actually has the same effect as without the ampersand, because the compiler
"knows" that can_receive, if used with a function argument list, always expects a "pointer to a CAN
message".

 4.4 4.5.2 Accessing script variables from a display page

Using the prefix "script.", any 'simple' variable in the script can be read or modified by the display
application (display interpreter).
For example, when the user presses a button, the button's reaction (a display interpreter command)
may set a script variable, which is then polled in the script's main loop to complete the operation
(for example, modify a parameter in a CAN-controlled ECU using a self-defined CAN protocol).

Beware: The display application and script are not synchronized per se.
The script runs 'in the background', possibly in a multitasking environment, and the display
application 'doesn't know what the script is doing' when it accesses the script's variable). Some of
the script examples use this feature to inspect variables on the terminal's screen.

See also:

• Synchronisation between script and display by pausing the display (while the script
'calculates a new set of results')

• Interaction between script and display application : Chapter 3

4.5.3 Accessing display variables from a script

In some cases, the script code may need to read or modify the value in one of the display variables
(defined on the 'Variables' tab). This is more complex than you may guess, because the script may
be called while the display is being updated (especially if the display update is quite slow). For this
reason, any access to a display variable from the script code must use the prefix "display." before
the name of a display variable. The system will make sure that the value of a "display variable"
cannot be modified during the display page update, or during the handling of programmed 'display
events' .
Example (with 'Oeldruck' being a display variable connected to a 'CANdb'-Signal, which turned it
into a network variable) :

 if (! display.Oeldruck.va) then
 print("Oil pressure isn't valid !");
 else if (display.Oeldruck < 1.2345) then
 print("Oil pressure is too low !");
 endif;

Note: For reasons explained above, accessing display variables from a script may slow down the
script significantly (because it may have to "wait" for the display).
Never use display variables inside the script for anything else than 'showing them on the display' !

See also:

© MKT / Dok.-Nr. 85122 Version 2.2 65 / 220

../help/progt_01.htm#var_components
../help/candb_01.htm
../help/progt_01.htm#var_properties
../help/progt_01.htm#var_properties
../help/btns_01.htm#connecting_buttons_and_script

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• Controlling the programmable display pages from the script (page switching, etc)

• More about interaction between script and display application :

• Accessing display variables from the script

• display.GetVarDefinition (access the definition, not the value, of a display variable)

• Accessing display elements (on the current display page) from the script

• Accessing script variables from the display interpreter

• Invoking script procedures from the display interpreter

• Invoking script functions from display pages (to retrieve a text strings for the
display, used for internationalisation)

• Keywords

• Examples
• Overview (of this document)

© MKT / Dok.-Nr. 85122 Version 2.2 66 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

4.6 Arrays

Variables and constants can both be declared as arrays. The syntax is similar to the "C"
programming language (there is no "array" keyword) :

Squared brackets (not parentheses!) are used for array sizes, and -later, when accessing the array
elements- as the array index.

As already mentioned in the chapter about variable declarations, array indices run from zero to <
array-size MINUS ONE > !

Example: 3D-Array, organized in "pages", "lines", and "columns"

var
 int ThreeDimArray[10][20][30];
endvar;
 ...
 z := 1; // "page" index, valid: 0..9
 y := 2; // "line of page", valid: 0..19
 x := 3; // "column of line", valid: 0..29
 ThreeDimArray[z][y][x] := 1234;

Notes on arrays:

• The maximum number of dimensions in an array is THREE.
Four-dimensional arrays are impossible.
Arrays of arrays are also impossible, pointers to arrays are impossible, and pointers inside
arrays must be treated carefully.

• Certain data types (like strings) are problematic in arrays, because a 'string' is in fact just a
pointer to a different memory area.
Thus, the contents of an array cannot easily block-copied :
Block-copying an array of strings would only copy their addresses, but would not duplicate
their contents (copy characters).

• For that reason, partial array references (as in C) are forbidden.
Trying to "copy" an entire page (1st dimension of the sample 3d-array shown above) like
 ThreeDimArray[z] := ThreeDimArray[z+1]
is impossible (at least, as of 2010-10-14) .

• The content of an entire array can be inspected at runtime in the programming tool:
Enter the name of the array (as a global script variable, without indices) in the Watch List.

• An array of BYTES can be used as a storage for any kind of 'binary' data. The append()
command can be used to append strings of characters (without the trailing zero, which is
specific for the script language) to such an array.

• When filling an array element-by-element, consider using the '++' operator to increment the
index variable:
 TxBuffer[TxByteIndex++] := 0x00; // append a ZERO BYTE to the
array

• To pass arrays to functions or procedures without copying elements, use an empty pair of
array brackets in the declaration (argument list) after the argument name as in the example

© MKT / Dok.-Nr. 85122 Version 2.2 67 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

shown below. Knowning the array's basic element type (here: byte) and knowing that
'SrcBitmap' is an array allows the compiler to check the syntax. The callee can use the
reference (here: "SrcBitmap[]") like an array:

 func DrawSprite(tCanvas ptr pDestCanvas, byte SrcBitmap[])
 pDestCanvas.drawImage(SrcBitmap);
 endfunc;

Passing arrays this way (by reference, i.e. without copying) consumes very little CPU time.
But the callee (called function) can modify the array data, which may not be the caller's
intention.

4.6.1 Maximum size (capacity) versus momentarily used length (.len) of an array

The maximum number of array elements (also known as 'capacity') can be queried via member
function 'size'. For multi-dimensional arrays, specify the dimension in parentheses, e.g.:
 maxPages := ThreeDimArray.size(0); // how many "pages" (first
array dimension) ?
 maxLines := ThreeDimArray.size(1); // how many "lines per page"
(second array dimension) ?
 maxColumns:=ThreeDimArray.size(2); // how many "columns per
line" (third array dimension) ?
To avoid the ambiguity of 'size' (which can have very different meanings in various programming
languages), you can use '.cap' (capacity measured in array-elements), similar as in the "Go"
programming language. At the time of this writing (2018-10-08), '.cap' returned the same value as
'.size'.

The momentarily used number of array elements ("length") can be retrieved by member function
'len':
 numPages := ThreeDimArray.len(0); // used number of "pages"
(first array dimension) ?
 numLines := ThreeDimArray.len(1); // used number of "lines per
page" (second array dimension) ?
 numColumns:=ThreeDimArray.len(2); // used number of "columns per
line" (third array dimension) ?

Without the specification of the dimension (in parentheses) directly after the keyword ".len" or
".size" / ".cap", the length or capacity along the first Dimension will be retrieved (or modified via
assignment). Thus, for one-dimensional arrays, you can always omit the dimension, as in this
example:
 currentLength := TxBuffer.len; // number of array elements
currently "in use"

Similar as in "Go" (for slices), the script language draws a distinction between "capacity" (.cap) and
"length" (.len). As long as no array elements have been set, the array has its declared "capacity", but
the "length" is initially zero. When appending new elements to the array (function append()), the
length (.len) may grow up to the maximum size, alias capacity (.cap).
Some other functions (for example file.write) use the .len member, when data from the array shall
be processed and there is no other (explicit) indication about how many elements to process.

© MKT / Dok.-Nr. 85122 Version 2.2 68 / 220

http://en.wikipedia.org/wiki/Go_(programming_language)
http://en.wikipedia.org/wiki/Go_(programming_language)

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

In contrast to slices in "Go", an array in the script language cannot be resized dynamically. Arrays
have a 'fixed' maximum size, to know the memory requirements already at compile time, instead of
running out of dynamically allocated memory later at runtime (in the target).

 4.5 4.6.2 Other elements of an array-header

Not translated from the German document yet.

 4.5.1 4.6.2.1 Arrays used as FIFO (ring buffer with 'first in, first out'-principle)

Not translated from the German document yet.

 4.5.2 4.6.2.2 Sampling interval and timestamp of the newest array element
<array-name>.t_sample

Sampling interval in seconds. Internally stored as a floating point value (float). The sampling
interval (aka sampling period) is the inverse of the sampling rate (sampling frequency),
which is more common in digital signal processing.
After a (forward-)FFT, this component contains the FFT bin width in Hertz instead of the
sampling interval.

<array-name>.unix_time
Timestamp of the first ("oldest") sample stored in the array, at index zero.
As for system.unix_time, the unit is defined as "number of seconds elapsed since January 1st,
1970, 00:00:00 UTC". Since this value is internally stored as a 64-bit integer in microseconds,
the value read from <array-name>.unix_time will always be a multiple of 1e-6. This
resolution should be succicient for all sampling rates achievable with an MKT-View (a few
kHz).

At the time of this writing (2018-11), a few DSP functions were planned for the MKT-View IV,
which operate on arrays, and automatically adjust the timestamp to compensate the group delay of a
digital lowpass filter (etc), which may be important when displaying multiple channels in a Y(t)-
diagram.

 4.6 4.6.3 Examples for the use of arrays

An example demonstrating the use of arrays can be found in the test application "ScriptTest4.cvt"
(contained in the installer, subfolder 'programs').
A more sophisticated example using arrays of constants and variables is in the 'quadblocks' demo.
Another example with arrays used for signal analysis (FFT), displayed as diagrams is in application
programs/DAQ_Test.cvt.
The application script_demos/diagrams.cvt uses arrays to store polygon coordinates plotted into
diagrams.

To efficiently convert byte-arrays into strings, use the constructor string(<byte-array>, <start
index>, <length>). This way, even without slicing the array, a part of the array can be converted

© MKT / Dok.-Nr. 85122 Version 2.2 69 / 220

../help/diagr_01.htm#draw_polygons_via_script
../help/diagr_01.htm#draw_polygons_via_script
../programs/script_demos/diagrams.cvt
../help/daq_01.htm#DAQ_test_application
../help/diagr_01.htm#sources
../help/diagr_01.htm#plotting_values_from_script_arrays
../help/diagr_01.htm#plotting_values_from_script_arrays
http://en.wikipedia.org/wiki/Sampling_rate#Sampling_rate
../help/scripting_49.htm#array_as_FIFO
../help/scripting_49.htm#array_header_components

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

into a string. This is typically used when processing data from a receive-buffer (byte array) as
strings.

© MKT / Dok.-Nr. 85122 Version 2.2 70 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 5 4.7 Operators

The script language uses almost the same numeric operators as the UPT display interpreter (even
though the internal evaluation of those operators are totally different - see the chapter about
bytecode if you are curious about the details). At the time of this writing (2013-11-08), the
following operators have been implemented :

Operator Alias Precedence Remarks

^ POW 5 (highest) reserved for 'A power B' (not bitwise EXOR!)

* 4 multiply

/ 4 divide

% MOD 4
modulo (remainder).
For floating-point values, use Math.fmod instead.

+ 3 add

- 3 subtract

<< SHL 3(?) bitwise shift left

>> SHR 3(?) bitwise shift right

== = (*) 2 compare for 'equality'

!= <> 2 compare for 'not equal'

< , > , .. 2 other compare operators

|| or 1 (lowest) logical (boolean) OR

&& and 1 logical (boolean) AND

| BIT_OR 1 bitwise OR

& BIT_AND 1 bitwise AND (a binary operator)

EXOR 1 bitwise (!) EXCLUSIVE-OR

! NOT 1 boolean negation

~ BIT_NOT 1 bitwise NOT (complement)

addr(variable) & (prefix) 1 Retrieve the address of a variable

(data type) 1 explicit typecast

++ (suffix) 1 post-increment

-- (suffix) 1 post-decrement

:= Assignment, e.g. A := B; // copy 'B' to 'A' (*)

(*) Avoid using a single '=' character as the 'compare-equal' operator. You should also avoid using
the single '=' character as the assignment operator.

Suggestion to resolve this ambiguity :
Use ':=' to assign a value (right of the operator) to a variable (left of the operator). This
operator is borrowed from PASCAL.
Use '==' to check for equality. This operator is borrowed from the "C" programming
language (which also inspired Java many years later).

Without this, the compiler would have to guess if '=' means "assign" or "compare for equality". It
usually makes a correct guess, at least in the obvious cases.

© MKT / Dok.-Nr. 85122 Version 2.2 71 / 220

http://en.wikipedia.org/wiki/Binary_operation
../help/progt_01.htm#numeric_operators

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

In case of doubt about operator precedence, use parentheses. Don't leave anything to
fate ! Especially for the bitwise and boolean "AND" and "OR" operators, there are no different
precedence levels (there is no "AND" before "OR" as in 'C' yet), so you are forced to use
parenthesis in cases like this:

Warning := EngineRunning AND ((WaterTemp < 5) OR (WaterTemp > 95))

See also: Keywords , overview .

 5.1 4.7.1 The 'address taking operator' ('&' or 'addr')
The ampersand, when used as unary operator, takes the address of the object right next to it. This is
similar as the 'address taking operator' in the "C" programming language:
If 'MyVariable' is the name of a variable (local or global), then &MyVariable retrieves the address
of that variable in memory.
This operator is typically used when passing arguments to functions by reference rather than by
value (i.e. pass the address of something to a subroutine instead of passing a copy of the value itself
on the stack).
For example, see inet.recv() . The 'output arguments' are in fact addresses, thus the name of
variables must be prefixed by the address-taking operator in this special case.

We suggest to use the more descriptive 'addr()'-operator instead of the ampersand. Both 'address
taking' operators have the same purpose.

Note:
When passing arrays as function argument , address-taking operators are not required, because
arrays are generally passed by reference (avoids wasting CPU time).

 5.2 4.7.2 Increment- and Decrement-Operator ('++', '--')

The '++' operator, when used on the right side of an integer variable inside an expression,
increments the value of the variable after retrieving the current value.
This is similar as the 'post-increment operator' in the "C" programming language.
In a similar fashion, '--' decrements the value of the variable after retrieving the current value.
Example:

 j := i++; // first copy 'i' to 'j', then increment 'i' by one

The above code has a similar effect (but runs faster) as the following:

 j := i; // copy 'i' to 'j'
 i := i+1; // increment 'i' by one

The '++' operator is often used to increment the index when filling arrays. The index variable is
initially set to zero, and then incremented by one whenever a new item was appended to the array.
One of the examples for the append() command also uses the '++' operator to append data to an
array:

 TxBuffer[TxByteIndex++] := 0x00; // append another ZERO BYTE

© MKT / Dok.-Nr. 85122 Version 2.2 72 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

In this example, 'TxByteIndex' is the array index for filling data into a byte array ('TxBuffer'). With
each byte appended to the array, 'TxByteIndex' is incremented by one AFTER being referenced as
index into the array.

Back to the overview of operators .

© MKT / Dok.-Nr. 85122 Version 2.2 73 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 6 4.8 User-defined functions and procedures

Procedures should replace the ancient 'gosub-return'-subroutines. Their main purpose is to give a
script a cleaner structure, allow parameter passing (through a well-defined argument list after the
procedure name), and allow recursive algorithms (by virtue of local variables on the stack). Details
about efficiently passing arrays to functions or procedures, see chapter 4.6.
Unlike user-defined functions, procedures do not return a value directly to the caller, and thus
cannot be used in expressions.

 6.1 4.8.1 User-defined procedures

Here is a simple example for a user-defined, recursive (*) procedure which prints a decimal number
to the text screen (taken from the TScreenTest example).
Please note the indentation between 'proc' and 'endproc', and use a similar coding style in your own
scripts. The compiler doesn't care for these leading spaces, but they make the sourcecode much
easier to read.

//--
proc PrintDecimal(int i)
 // Simple RECURSIVE procedure to print a decimal number .
 if(i>10) then
 PrintDecimal(i / 10); // print upper digits,
recursively
 endif;
 print(chr(48 + (i % 10))); // print least significant digit
endproc; // end PrintDecimal()

Example to call the procedure defined above (explained in the chapter about recursive calls) :

N := 123456;
PrintDecimal(N); // call user-defined procedure

Internally, shortly before the call of the procedure, the value of N is read, pushed to the stack. The
procedure (or function) uses the value on the stack like a local variable. Inside the procedure, 'i'
(=name of the local variable, here: function argument) has its own storage location for each new
call.
If you're interested in the details: The virtual machine which executes the script code uses a register
called BP (base pointer) to access function arguments as well as local variables.

In contrast to the rule 'exactly one line of sourcecode per instruction', the headline of a user-defined
procedure or function (~~ 'function prototype' in "C") may extend over more than one line of
sourcecode. Example (from the 'TimeTest' demo) :

//--
proc SplitUnixSeconds(
 in int unix_seconds, // one input, six outputs...
 out int year, out int month, out int day,
 out int hour, out int min, out int sec)
// Procedure to split 'Unix Seconds' into
// year (1970..2038), month (1..12), day-of-month (1..31),
// hour (0..23 !), minute (0..59), and second (0..59) .

© MKT / Dok.-Nr. 85122 Version 2.2 74 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 6.2 4.8.2 User-defined functions

User-defined functions work almost the same as user-defined procedures. The main difference is
that a function returns a value to the caller.
Simplistic example: User-defined function to add two integer values.

//--
func Sum2(int a, int b) // adds two integers, returns the sum
 return a+b;
endfunc;

Summe := Sum2(1, 2); // invoke the user-defined function

Note that the function header doesn't specify a type for the return value ! The reason is just a future
plan:
Script functions may return different types of results, similar to JavaScript (not Java).

In a user defined function, the 'return' command, followed by a value, will return to the caller with
the specified value as the function's "result" (aka "return value").

If the program counter reaches the end of a function ("endfunc") without a 'return' instruction, the
function returns 0 (zero) as an integer value.

Functions with certain 'special names' can be called as event handlers. In that case, the function call
will interrupt the normal program flow (at any point), and the event-handler's return value defines
whether the event shall be processed by the system (using the system's default message handler) or
not.

You will find other (less simplistic) user defined functions and procedures in the script examples.

 6.3 4.8.3 Invoking script functions through a backslash sequence from a display
page

User-defined functions (written in the script language) can be invoked from a display page, to
replace the text in one of the display page's format strings. For the display interpreter, the function
call must be embedded in a backslash sequence in a display format string (so the display interpreter
recognizes it as a function call, not ordinary text).

Syntax (in the format string of a display line definition):
\script.<function_name>(<arguments>)
where <function_name> is the name of a user defined function (defined in the script
language);
 and <arguments> are the arguments passed to the function. The number of arguments, and
their data types, must match the called function - see example below.

Example (for the format string in a display page definition):
\script.GetText(123)
where GetText is the name of a user-defined function, written in the script language, which
takes an integer argument (here: a 'text reference number') as input, and returns a string. The
maximum string length returned to the display-interpreter this way is 1024 characters (limited
by the display's static string types, not by the script language). This example is based on the

© MKT / Dok.-Nr. 85122 Version 2.2 75 / 220

../help/progt_01.htm#format_string

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

'multi language demo' (script_demos/MultiLanguageTest.cvt) :

//--
func GetText(int ref_nr) // User defined function .
// Returns strings in different languages .
// Input: ref_nr = reference number for a certain text,
// may run from zero to 9999 .
// Currently selected language in variable 'language',
// which may be 10000(=LANG_ENG) or 20000(=LANG_GER), etc.
 select(ref_nr + language)
....
 case #(123 + LANG_ENG): return "onehundredandtwentythree";
 case #(123 + LANG_GER): return "Einhundertdreiundzwanzig";
....
 else: return "missing translation, ref_nr="+itoa(ref_nr);
 endselect;
endfunc;

Note: Similar as for event handlers, the function invoked from a backslash sequence should return
'as fast as possible' to the caller. Long loops, file I/O, and other slow operations must be avoided.
Otherwise the device would appear to be non-responsive (or, from the operator's point of view,
"reacts sluggish" or even "crashes"). A watchdog in the runtime system terminates the function call,
if the function doesn't return to the caller within a few hundred milliseconds (time specified in the
chapter about event handling). This also applies to functions invoked from the display interpreter
via backslash sequence, etc. Such a limitation does not exist in the normal script context ("main
loop"), due to the pseudo-multitasking. If the maximum time is not sufficient for whatever-your-
function-needs-to-do, and if nothing else helps, you can avoid this by feeding the watchdog in the
script yourself - but beware of the consequences (sluggish response to user actions, protocol
timeouts, etc).

See also: More about interaction between script and display application :

• Accessing display variables from the script

• Accessing script variables from the display interpreter
• Invoking script procedures from the display interpreter

4.8.4 Invoking script procedures from the display interpreter
In a few rare cases, you may need to invoke a procedure (or a function) written in the script
language from a display interpreter commandline. For example, call your script from the 'Reaction'
of a programmable button:

Definition of a button (in the UPT display application):
\btn($2,"German",60,script.SetLanguage(LANG_GER))

The prefix 'script.' tells the display interpreter that a procedure (or a function) written in the
script language shall be called.
In the example shown above 'SetLanguage' is the name of a user-defined procedure, called when the

© MKT / Dok.-Nr. 85122 Version 2.2 76 / 220

../help/progt_01.htm#icmd_script
../help/btns_01.htm#connecting_buttons_and_script

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

button is pressed.

There a some restrictions of 'what may be done' in a procedure (or function) called from the display
interpreter. Most important: The procedure must not block the caller for more than a few dozen
milliseconds, as explained for Event Handlers written in the script language. Reason: In contrast to
the normal script execution, the display interpreter cannot 'wait for a long time' when updating a
display page, or checking for display-events - the system would seem to 'freeze' from the operator's
point of view. For details about the maximum time spent in the called function, see
system.feed_watchdog.

A complete example can be found in the 'Multi-Language-Test'.

See also: More about interaction between script and display application :

• Accessing display variables from the script

• Accessing script variables from the display interpreter

• Invoking script functions from display pages (to retrieve a text for the display, used a
backslash sequence in the display element's format string)

• Event handling in the script language (as a replacement for the 'events' defined in the UPT
display pages)

4.8.5 Input- and output- arguments

By default, all parameters in a procedure's (or function's) argument list are "inputs", which means
the procedure can read their value, but cannot modifiy the value in the caller's variable. Only
arguments after the keyword 'out' in the formal argument list may affect the caller's variable.
Arguments declared as 'in' (input), or without in / out, cannot affect the caller's variables in any way
(last not least because the script language doesn't support pointers or call-by-reference yet).
Example :

proc AddInteger(in int A, int B, out int Result)
 Result := A + B;
endproc
...
var
 int N;
endvar;
AddInteger(1,2, N); // CALL of the procedure. Output copied to
'N' when returning .

The 'in' keyword was only added for clarity, to emphasize that an argument is NOT an 'output' but
'input' (read-only from the procedure's point of view) .

Note that the parameter passing mechanism for arguments declared with the 'out' keyword doesn't
have anything to do with pointers, or 'call-by-reference' as known from other programming
languages. In fact, arguments declared as outputs are 'written back' to the variable (from which they
were read before the call) by the caller ! This has the side effect that the modified output value does
NOT have an effect on the caller's variable until the procedure (or function) returns. In other words,

© MKT / Dok.-Nr. 85122 Version 2.2 77 / 220

../help/progt_01.htm#format_string

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

all 'outputs' become effective at the same time --- in the moment the function / procedure returns to
caller !

 6.4 4.8.6 Recursive calls

In this context, a recursive call means that a procedure (or user-defined function) may call itself ...
as long as there is sufficient stack memory available. For each call instance, a new set of local
variables (which includes the parameters in the argument list) is allocated on the stack, and freed
when the procedure (or function) returns to the caller.

To understand recursive function calls, look at the PrintDecimal example from a previous chapter
again :

proc PrintDecimal(int i)
 if(i>10)
 then PrintDecimal(i / 10);
 endif;
 print(chr(48 + (i % 10)));
endproc;

In a sample call, PrintDecimal(123456), the first instance is created with i = 123456 (as a local
variable on the stack). Because 'i' is greater than ten, the procedure calls itself (= recursion !) with i
= 12345 . For the second (recursive) call, a new instance is created, occupying additional stack
space. In that instance, 'i' is still greater than ten, so the recusion continues, until 'i' is less than ten
(actually, it will be one then, which is the most significant digit, which is printed to the screen first).
This results in the following 'call history' (-> means "calls", <- means "returns to caller") :

PrintDecimal(123456)
 -> PrintDecimal(12345)
 -> PrintDecimal(1234)
 -> PrintDecimal(123)
 -> PrintDecimal(12)
 -> PrintDecimal(1)
 (no further recursion; prints "1")
 <- (procedure returns to the caller)
 (caller now prints 12 modulo 10 = "2")
 <-
 (caller now prints 123 modulo 10 = "3")
 <-
 (caller now prints 1234 modulo 10 = "4")
 <-
 (caller now prints 12345 modulo 10 = "5")
 <-
 (first instance finally prints 123456 modulo 10 = "6")
<-

Recursive calls can also involve more than one procedure, calling each other. Even though they
may be an elegant solution in some cases, their stack usage is hard to predict. So, in many cases,
loops and similar constructs (see next chapter) are a better, more 'robust' alternative.

© MKT / Dok.-Nr. 85122 Version 2.2 78 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 7 4.9 Program flow control

The script language supports program flow commands like

• if..then..else..endif

• for..to.. [step] .. next

• while .. endwile (checks the condition at the begin of the loop body)

• repeat .. until (checks the condition after the loop body, i.e. loop runs at least once)

• select .. case .. else .. endselect

• goto (jumps to a label within the same function ... please forget about line numbers!)

• gosub .. return (deprecated, use procedures wherever possible)

• stop : stops the execution of the script's "main program". Only special calls (from event
handlers) are possible after this command.

• end_script : Optional text marker for the "end of the main script". Generates a special
bytecode instruction which (at runtime) prevents the program counter from unintentionally
running into the first subroutine (procedure or function). If this marker isn't explicity
specified, the script compiler will generate it automatically (bytecode instruction inserted
before the first implementation of a function or procedure).

Note: As in BASIC and IEC 61131 "structured text" (and in contrast to languages like "C" and
Java), built-in commands and keywords are case-insensitive. Some users prefer to write keywords
in all UPPER CASE. See notes about case-insensitivy and recommended coding style.

In the broader sense, user-defined functions and procedures are also suitable (very suitable) to
control the program flow. Since the introduction of procedures and functions, you should not use
'goto', 'gosub' and 'return' in a new appication. They only remain part of the language for backward-
compatibility.

 7.1 4.9.1 if-then-else-endif

Simple example:

 if A<100 then
 do_something_if_a_is_less_than_onehundred ;
 ...
 else
 do_something_else ;
 ...
 endif;

In contrast to the rule 'exactly one line of sourcecode per instruction', the condition between if and
then may extend over more than one line of sourcecode. This allows complex and nested constructs
as presented in the 'examples' section of this document.

To simplify a chain of 'else','if' and 'endif', the 'elif' (else-if) command can be used as in the
following example:

 if (A < 0) then

© MKT / Dok.-Nr. 85122 Version 2.2 79 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 print("Negative !");
 elif (A==0) then
 print("Zero");
 elif (A==1) then
 print("One");
 elif (A >= 2) and (A <= 3) then
 print("Two to Three");
 elif (A == 5) or (A == 7) then
 print("Five or Seven");
 else
 print("Some other value (",A,")");
 endif;

 7.2 4.9.2 for-to-(step-)next
Loop using an index variable, which runs from the specified start value to the specified end value.

Simple example:

for Loop:=1 to 100
 do_something_a_hundred_times
next Loop;

The name of the loop variable (in the above example: 'Loop') after the keyword 'next' may be
omitted, but it's recommended to improve readability (especially with deeply nested loops). If the
name of the loop variable is specified after 'for' as well as after 'next', the compiler can check if
there is a matching 'next' for each 'for'.
When using the option '#pragma strict', the compiler shows a warning if the name of the loop
variable is not specified after 'next'.

Optionally, the stepwidth of the index variable can be specified, using the STEP keyword:

for Loop:=0 to 200 step 2
 do_something_a_couple_of_times
next Loop;

If the counter-variable shall be decremented rather than incremented, use a negative STEP value
(the compiler cannot use a negative stepwidth automatically, because he doesn't see the start- and
end value at compile time). For more examples, study the 'LoopTest' application.

 7.3 4.9.3 while..endwhile
Syntax:

while <condition>
 <statements>;
endwhile;

Loops while the condition, checked at the beginning of each loop, is TRUE (non-zero) .

Simple example:

I:=0; // make sure 'I' starts at some defined value
while I<100

© MKT / Dok.-Nr. 85122 Version 2.2 80 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 I := I+1 ;
 some_other_statements ;
endwhile; // .. or END_WHILE for IEC61131-similarity

Note that the statements inside a while - endwhile loop may be executed ZERO times (if the
condition is initially FALSE).

With the condition set to 1 (one, i.e. 'always TRUE'), while(1) .. endwhile forms an endless loop. As
in the example from the introduction, this is often used for the 'main loop' in the script. In such
cases, the loop speed should be limited by calling wait_ms(50), which means the script waits for 50
milliseconds in each loop, during which the display is updated.
Otherwise, the script would waste a lot of CPU time in the loop.

 7.4 4.9.4 repeat..until

Syntax:

repeat
 <statements>;
until < stop_condition >;

Loop with a STOP-condition, checked at the end of the loop (specified after the keyword "until").

Example:

I:=0; // make sure 'I' starts at some defined value
repeat
 I := I+1;
 some_statements
until I>=100;

Note that the statements inside a REPEAT-UNTIL loop are executed at least once !

 7.5 4.9.5 goto

Unconditional jump. Try to avoid using 'goto' whereever possible ! Using too many goto
instructions in your code will turn it into a difficult-to-maintain nightmare, aka 'Spaghetti-Code'. Or,
as Niklaus Wirth put it, "GOTO Considered Harmful" . To discourage the use of 'goto', it usually
doesn't not work inside user-defined functions and procedures.
Simple, and deliberately poor, example:

if divisor==0
 then GOTO ErrorHandler;
 else quot := dividend / divisor;
endif;

 ... some other code in the same subroutine

ErrorHandler: // we shouldn't get here...
 Info$:= "Something went wrong";
 STOP

© MKT / Dok.-Nr. 85122 Version 2.2 81 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 7.6 4.9.6 gosub..return

Simple subroutine call without parameter passing. Deprecated, see note below (use procedures
instead of 'gosub' / 'return') .
"Gosub" works a bit like "goto", but places the address of the next instruction to be executed (in the
caller) on the stack.
"Return" returns to the address on the top of the stack, i.e. continues execution at the caller's next
instruction.

Note: Unlike user-defined procedures, stoneage gosub-return subroutines don't have their own stack
frame; therefore you cannot define local variables in such subroutines.
Wherever possible, use procedures, and avoid gosub-return (as well as you should avoid 'goto').
'Gosub' only exists for compatibility reason.

 7.7 4.9.7 select..case..else..endselect

This construct may replace a long nested sequence of if-then-else statements, but only compares
INTEGER- OR STRING CONSTANTS in the case-marks.

In contrast to "C", the 'case' construct supports an extended syntax. A complete range of values can
be specified as "case <Value1> to <Value2>". The code after that case-label is executed if the
select-value is between (and including) 'Value1' and 'Value2'. Thus, "case 4 to 6:" in the following
example checks if 'X' is 4, 5, or 6.

Simple example using a bit of pseudo-code ("do_something") :

 X := can_rx_msg.id;
 select X
 case 1 : do_something_if_X_equals_one();
 case 2 : do_something_if_X_equals_two();
 case 3 : do_something_if_X_equals_three();
 case 4 to 6 : do_something_if_X_is_between_four_and_six();
 else : do_something_if_X_is_none_of_the_above();
 endselect;

Important: In contrast to the "C" programming language, there is no 'break' statement required at the
end of each case-block, if the case-block is not empty. The program doesn't "fall through" from one
case to the next, with the exceptions listed below:

• If there are two or more case marks, with nothing in between (empty case-block with no
'executable instruction'), the first statement after the case-marks is executed.
Here is a (rather braindead) example:
select X
 case 1 : // same handler for cases 1, 2 and 3 ...
 case 2 : // with no code between cases, 'fall through' as in
"C"
 case 3 : // we could use "case 1 to 3" instead
 print("X = One,Two,or Three");
 case 4 :
 print("X = Four");
 else :

© MKT / Dok.-Nr. 85122 Version 2.2 82 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 print("X is less than one, or larger than four");
endselect;

• The keyword 'enter_next_case' at the end of a case-block forces "fall through" into the next
case (as the "C" programming does by default):

for A:=0 to 6
 print("A=",A,": ");
 select A
 case 4 : // "fall through" from one case to the next ..
 case 5 : // .. only if there is nothing in between
 print("four or five.");
 case 3 :
 print("larger than two, ");
 enter_next_case; // aka 'fall through' to the code after the next
case label, as in "C"
 case 2 :
 print("larger than one, ");
 enter_next_case;
 case 0 to 1 :
 print("non-negative.");
 else :
 print("negative, or larger than five.");
 endselect;
 print("\r\n"); // carriage return + new line (-> nächste Zeile)
next A;

Output:
A=0: non-negative.
A=1: non-negative.
A=2: larger than one, non-negative.
A=3: larger than two, larger than one, non-negative.
A=4: four or five.
A=5: four or five.
A=6: negative, or larger than five.

If a case-mark without following executable code shall actually 'do nothing', use the break
statement. When used inside a select-endselect block, break actually jumps to the next endselect.
Example:

select X
 case 1 :
 break; // do nothing
 case 2 :
 break; // do nothing as well
 case 3 :
 print("X = Three");
 case 4 :
 print("X = Four");
 else :
 print("X is less than one, or larger than four");
endselect;

© MKT / Dok.-Nr. 85122 Version 2.2 83 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

A simple example for the select-case construct is in the display application 'ScriptTest1.cvt'.
A longer example for the select-case construct is in the display application 'ScriptTest3.cvt'.

A 'case' mark isn't restricted to integer constants - it also support strings. In the demo application to
read INI-files, this possibility is used to branch by the names of 'Sections' and 'Keys' in an INI file,
which is read sequentially from the memory card.

The applications mentioned above are contained in the programming tool's installer.

 7.8 4.9.8 wait_ms .. wait_resume

Waits for "something to happen", while the CPU can perform other tasks (like updating the
display).

wait_ms(N)
blocks the normal script execution for the specified number of milliseconds (N) .
While the script is 'waiting', the normal display program runs faster because all CPU time can
now be used for the display.
Without waiting in the main loop (endless loop), script and display-update would still run
side-by-side, but the script's main loop would consume an unnecessarily large amount of CPU
time.
Recommended waiting intervals (for the script's main loop) are 10 to 50 milliseconds.
Do NOT call wait_ms() from event handlers and other 'interrupt-alike' functions !
See also: system.timestamp.

wait_ms(0) : Special case to 'give the CPU to someone else', e.g. an event handler.
With a delay of "zero milliseconds", wait_ms() lets the system handle any pending timer
event (etc), similar to co-operative multitasking.
The purpose of wait_ms(0) is similar to sched_yield() in Linux, or Sleep(0) in the windows
API.
It is intended to be called from the main loop to reduce the latency of timer events. Example:

 while(! file.eof(fh)) // repeat until end of file...
 temp := file.read_line(fh); // read next line of text
 ImportFromCSV(temp); // process text line from CSV (may take some
time)
 wait_ms(0); // let event handlers work (co-operative
multitasking)
 endwhile;

Note: wait_ms(0) will not wait for a display update (which could consume dozens of
milliseconds).

If no timer event is pending, and the previous call of wait_ms(0) is less than 10 ms ago,
wait_ms(0) will do nothing.

wait_resume

© MKT / Dok.-Nr. 85122 Version 2.2 84 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

lets the blocked script continue, even if the interval specified in the wait_ms command has
not expired yet.
Because the normal script execution is blocked, the only place where wait_resume makes
sense is an event handler.

See also: system.timestamp, Contents, Keyword List, Quick Reference .

 8 4.10 Other functions and commands
In addition to the program flow control commands from the previous chapter, the script language
also contains functions and commands for special purposes.

Some of them will be explained in this chapter, while others (like the obvious math functions;
random; etc) are only mentioned in the keyword list .

See also: Contents , string processing, file I/O functions, CAN bus functions, screen output,
system functions, date- and time conversions,
 User-defined functions and procedures .

 8.1 4.10.1 Numeric functions, "Math", and digital signal processing
Most of the functions and procedures listed below can process integer or floating point values.
Data types like 'byte', 'word', and 'dword' are automatically converted to integer before processing.
See also: Numbers and numeric expressions.

 8.1.1 4.10.1.1 Simple numeric functions
limit(variable,min_value,max_value)

Limits the value stored in <variable> to the specified range.
This is a shorter and more efficient replacement for the following statements:

 if (variable < min_value) then
 variable := min_value;
 endif;
 if (variable > max_value) then
 variable := max_value;
 endif;

random
Returns a pseudo-random number between zero and <N> minus one.

Math.abs(x); Math.abs(x,y)
Returns the absolute value, or (with two arguments) the length of a 2d-vector.
Implements the formula abs(x,y) := sqrt(x^2 + y^2) .
Together with Math.atan2, Math.abs is used to convert cartesian into polar coordinates.

Math.atan2(y,x)
Returns the four quadrant arctangent value in radians.
This function is often used to convert cartesian into polar coordinates, without the need for

© MKT / Dok.-Nr. 85122 Version 2.2 85 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

case distinctions of the ancient 'atan' (where only y/x was passed as argument, which was very
unpractical). Details at Wikipedia on atan2.

Math.fmod(x,y)
Returns the floating point remainder of x/y.
If both arguments are integers, use the modulo-operator (%) instead.

Math.log(x)
Returns the natural logarithm (base 'e') of 'x'.

Math.log10(x)
Returns the base 10 logarithm of 'x'.

Math.pow(base,exponent)
Returns 'base' taken to the power of 'exponent'.
Both inputs, and the return value, are floating point numbers.
Example (from script_demos/MathTest.cvt): f := pow(2.0, 0.5); // actually the square root of
two

Math.sqrt(x)
Returns the square root of 'x'.
'x' must be a non-negative floating point number.

Math.sin(x)
Returns the sine of argument (angle) 'x'.
'x' must be a floating point number. The unit is radians (not degrees) !

Math.cos(x)
Returns the cosine of argument (angle) 'x'.
'x' must be a floating point number. The unit is radians (not degrees) !

 8.1.2 4.10.1.2 Advanced math functions for digital signal processing

The following functions are only usable (i.e. "are fast enough for real-time processing") in devices
with a hardware floating point unit, e.g. MKT-View IV. To find out if these functions are available
for a certain device, please check the Feature-Matrix (column titled "Specials", "DSP functions").

Math.cfft(input,output)
Forward Fast Fourier Transformation with complex in- and output.
The input may be a array with 256, 512, 1024 or 2048 floating point elements (must be a
power of two).
The output must be an array with the same size as the input. Example:

 float fltFFTin[1024]; // FFT input (complex time domain samples, aka
I/Q signal)
 float fltFFTout[1024]; // FFT output (complex frequency bins)
 ...

© MKT / Dok.-Nr. 85122 Version 2.2 86 / 220

../help/featmatr.htm
http://en.wikipedia.org/wiki/Atan2

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 Math.cfft(fltFFTin, fltFFTout); // Fast Fourier Transform with complex
in- and output

If (as in the example) in- and output are simple arrays of type 'float', the complex values are
interleaved as follows:
 real part of 1st sample, imaginary part of 1st sample,
 real part of 2nd sample, imaginary part of 2nd sample,
If the input signal had been acquired with 10000 samples per second, the complex FFT in the
example shown above would deliver a spectrum with 512 complex 'frequeny bins'. Each bin
represents a narrow frequency band, approximately 10000 Hz / (2 * 512) = 9.8 Hz wide.
See also: Math.rfft (forward FFT with real input), Math.ComplexToMagnitudes, data
acquisition .

Recommended reading about the FFT and DSP in general :
The Scientist and Engineer's Guide to Digital Signal Processing by Stephen W. Smith.

Math.rfft(input,output)
Forward Fast Fourier Transformation with real input, and complex output.
The input may be a array with 2^N floating point elements (size must be a power of two).
Even a 'real FFT' produces a complex result (complex spectrum of the input signal) ! For
example, a real FFT with 1024 input samples in the time domain produces 512+1 complex
frequency bins. With two array elements per complex frequency bin, the output array must be
at least the same capacity:

 float fltFFTin[1024]; // FFT input (real time domain samples)
 float fltFFTout[1024+2]; // FFT output (complex frequency bins, with
'Nyquist bin')
 ...
 daq.read_channel(7, fltFFTin); // read input for the FFT from the DAQ
into an array
 Math.rfft(fltFFTin, fltFFTout); // Fourier Transform with real input,
complex output

See also: Suggested reading about the complex FFT and DSP in general.

Math.ComplexToMagnitudes(input,output,reference)
Converts an array with complex value pairs (typically the output from an FFT, i.e. complex
spectrum) into "Decibels" of any flavour. The 'reference' value (scalar) can be used to adjust
the 'dB' output to include the gain of a sensor (e.g. sound pressure level), and to compensate
the FFT 'gain' (which depends on the FFT length as explained further below).
In the 'DAQ-Test' application (programs/DAQ_Test.cvt), this function is used to convert a
complex spectrum into dBfs (*) for a combined spectrum/spectrogram display in a diagram
with background image:

 ...
 Math.rfft(fltFFTin, fltFFTout); // forward FFT with real in- and
complex output
 ref := 32767.0 * C_FFT_SIZE; // reference for 0 dBfs (*) from 16-
bit A/D converter

© MKT / Dok.-Nr. 85122 Version 2.2 87 / 220

../help/diagr_01.htm#background_image
../help/diagr_01.htm#background_image
../help/daq_01.htm#DAQ_test_application
../help/daq_01.htm
../help/daq_01.htm#daq_read_channel
http://www.dspguide.com/pdfbook.htm
../help/daq_01.htm
../help/daq_01.htm

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 Math.ComplexToMagnitudes(fltFFTout, fltLogSpectrum, ref); //
logarithmize spectrum (-> dB)

(*) dBfs : "decibel over full scale"
0 dBfs is the magnitude where the peaks of a single, pure sine wave would just touch
the clipping point at the input of the A/D converter (here, a 16-bit converter with an
output range of +/- 32767 - thus the left factor in the reference value).
A pure sine wave with amplitude A, fed into a FFT with <C_FFT_SIZE> samples in the
time domain, will give a peak in the frequency domain of A * C_FFT_SIZE (!) - thus
the second part (factor) in the reference value.

For each complex value pair (re,im) in the input, Math.ComplexToMagnitudes() performs this
operation :
output[i] := 20 * log10(sqrt(re^2 + im^2) / reference); //
principle - not the implementation

 8.2 4.10.2 Timers and Stopwatches (in the script language)

 8.2.1 4.10.2.1 Timers to fire events or periodic intervals

The command setTimer starts a timer in the script language, for example:

 var
 tTimer timer1; // Declare an instance of a timer as a global variable
of type 'tTimer'
 endvar;
 ...
 setTimer(timer1, 200); // Start 'timer1' for a 200-millisecond interval,
 // here without a timer event handler
 ...

To check if a timer is expired (i.e. "programmed time is over"), the script can poll the 'expired' flag
in the tTimer structure as in the following code snippet:

 if (timer1.expired) then
 timer1.expired := FALSE; // clear the 'expired' flag; will be set again
200 ms later
 system.beep(1000, 1); // short beep (1000 Hz, 1 times 100 ms
duration)
 endif;

Note: As long as the timer isn't explicitly stopped (i.e. timer1.running isn't FALSE), it will keep on
setting the 'expired' flag periodically (every 200 milliseconds in the example shown above).
Regardless of when exactly the 'expired'-Flag has been cleared by the application (as in the above
example), the timer keeps running synchronously in the background.

© MKT / Dok.-Nr. 85122 Version 2.2 88 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

As optional third parameter, 'setTimer' accepts the address of a Timer Event Handler. Any number
of timer event handlers can be implemented in the script language, and (if a handler's address is
passed to 'setTimer') the handler will be invoked periodically. Details about that in the chapter about
Timer-Events.

See also: wait_ms(), system.ti_ms, system.unix_time, StartStopwatch(), ReadStopwatch_ms() .

 8.2.2 4.10.2.2 StartStopwatch / ReadStopwatch (simple interval-polling 'stopwatch' timers)

In some cases, the timer described in the previous chapter (using setTimer(tTimer)) is certainly
'Overkill'.
If all you need is measure the time (in milliseconds) between to actions (or script operations), with
out firing events, you can use a simpler alternative described below.
It works like simple old-fashioned stopwatch on a running track:

• when the runner passes the start point, start the stopwatch. In the script: call
StartStopwatch();

• when the runner reaches the track's end, read the time from the stopwatch:
ReadStopwatch_ms() returns the number of milliseconds.
(a stopwatch doesn't need to be "stopped" just to read it - in contrast to a bulky dot-net-
component, we can read it on-the-fly)

In this case, you can have as many stopwatches running 'simultaneously'. In fact, each of these
stopwatches requires one integer variable, in which the script stores the 'start time'. A running
stopwatch doesn't cost any CPU time (only starting and reading it consumes a few microseconds,
which is neglectable) :

• by calling StartStopwatch(< Integer-Variable >), the current value of the timestamp
generator (system.timestamp) will be copied into the specified value (passed in 'by
reference', i.e. address).

• when calling ReadStopwatch_ms(< Integer-Variable >), the system first calculates the
difference between the current timestamp generator value and ("minus") the value stored in
the integer variable, and converts it into milliseconds.

Because, as explained above, the integer-value itself is not incremented periodically, you can have
an almost unlimited number of these 'stopwatches' in your script [in contrast to setTimer(tTimer)].
Furthermore, a stopwatch that has been started once can be read as often as you like, without ever
being stopped.

Example:

 var
 int MyStopwatch; // Declare a simple (but global) integer variable
 endvar;
 ...
 StartStopwatch(&MyStopwatch);
 Do_Something();

© MKT / Dok.-Nr. 85122 Version 2.2 89 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 if(ReadStopwatch_ms(&MyStopwatch) > 500) then
 print("Surprise: 'Do_Something()' took over 500 milliseconds !");
 endif;
 ...

 8.3 4.10.3 print, gotoxy, cls & Co (output into a multi-line text panel)
The following commands can be used to display text on a multi-line text panel (on any of the
programmable display pages, using a "\panel" element in the display page definition).

cls : "clear screen"
Here: Clears the contents of the text "screen" buffer. Precisely, the buffer is filled with space
characters, and all cells are set to the current foreground- and background colour. The script
doesn't have direct access to the (graphic) video RAM.

clreol : "clear to end of line"
Clears the rest of the current text buffer line, beginning at the current output cursor position.
The cursor position itself is not affected by this command.

setcolor(foreground,background) : Set the drawing colours for following text output
into the text buffer.

Sets the colour for subsequent calls of print, cls, and clreol. You should not use numeric
colour values (because the colour codes may be hardware dependent), but any of the colour-
constants listed here, or use rgb to compose a colour.
If any of the two colours shall not be modified, pass a negative value as function argument
(e.g. -1 = "don't modify").

rgb(red, green, blue) : Function to compose a colour from three components.
Besides the colour constants (like clBlack, clWhite, etc), this is the only recommended
method to define colours in your script program. The value range for each of the three colour
components is 0 to 255, regardless of the display's actual number of "bits per pixel".
Depending on the display's colour model, not all of the 2 ^ 24 possible colour combinations
can be exactly realized ! In such cases, the firmware will try to pick the 'best possible' colour.
Don't assume anything about the format of the colour returned as tColor by the RGB function
- it's hardware dependent ! The 'Loop Test' application uses rgb() to produce a colour pattern
in a text panel.

gotoxy(x,y) : sets the text output cursor into column 'x', line 'y'.
The first argument is the zero-based 'X' coordinate (text column, ranging from 0 to 79), the
second argument ('Y') is the text line number (ranging from 0 to 24).
For example, gotoxy(0,0) will place the text output cursor in the upper left corner of the text
screen / text panel.

print : prints a list of values (numeric and/or strings) to the text screen / text panel.
The output cursor position (X) will be incremented for each printed character. If the cursor
reaches the end of a line, it wraps to the next.

© MKT / Dok.-Nr. 85122 Version 2.2 90 / 220

../help/progt_01.htm#bslash_panel
../help/progt_01.htm

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

To 'print' more than one value in a single call, separate the values in the argument list with
commas, as in this example:
print("\nResults A,B,C = ",A," ",B," ",C)
(Remember: backslash-n in a string constant means "new line").
For numeric values (integer or float), print always uses the shortest possible notation, without
leading zeroes. If you want fixed lengths, or leading zeroes (as in date and time displayed on
the screen), use the itoa function (integer-to-ascii) to convert the numbers into strings with
leading zeroes and a fixed width. Example (from 'TimeTest.cvt', shows a calendar date in ISO
8601 format) :
print(itoa(year,4), "-", itoa(month,2), "-", itoa(day,2));

tscreen : wrapper object for the 'text screen buffer'.
tscreen.cell[Y][X]

accesses the character cell in the Y-th line, and X-th column of the text screen buffer as
a tScreenCell structure.
Most built-in fonts use DOS-compatible character sets from 'codepage 437' so the text
screen has limited graphic capabilities - see TScreenTest example !

tscreen.cell_width
Width of a single text cell in pixels, as currently rendered on the screen.

tscreen.cell_height
Height of a single text cell in pixels, as currently rendered on the screen.
If a display page was automatically scaled for a new screen resolution,
cell_width and cell_height may be different from the 'designed' values.

tscreen.cx
returns the text output cursor's current 'x' coordinate (zero-based column index).

tscreen.cy
returns the text output cursor's current 'y' coordinate (zero-based line index).
tscreen.cx and cy are read-only. To modifiy the cursor position, use
gotoxy(column,line) .

tscreen.cs
Cursor Shape / Cursor Style. Defines if and how the text output cursor shall be
displayed.
The script can use a bitwise combination of the following constants for this purpose:
csOff (Cursor off; default), csUnderscore, csSolidBlock, csBlinking.
The VT100 Emulator example uses this feature to emulate an old-fashioned virtual
terminal's cursor display.

tscreen.xmax
returns the max. allowed 'x' coordinate of the text buffer (column index).
tscreen.xmax is also writeable - see details in tscreen.ymax !
The default value of tscreen.xmax is 79 (i.e. 80 characters per line, indexed 0..79).

tscreen.ymax

© MKT / Dok.-Nr. 85122 Version 2.2 91 / 220

../help/DOS_chars_CP437_hex.png
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

returns the max. allowed 'y' coordinate of the text buffer (line index).
Per default, tscreen.xmax is 79, and tscreen.ymax = 39; but the 'geometry' of the text
screen buffer can be adjusted (within certain limits) by assigning new values to
tscreen.xmax (first) and tscreen.ymax (second). Most devices are limited to the
following values:

• tscreen.xmax must not exceed 99 (i.e. up to 100 characters per line)
• The product of (tscreen.xmax+1) * (tscreen.ymax+1) must not exceed 8000

(because the text screen buffer was limited to 8000 tScreenCell elements in
2013-03-20)

When modifying the 'geometry', first set the lower of the two dimensions (usually
tscreen.xmax), so the product never exceeds the maximum. Example:
 tscreen.xmax := 39; // only need 40 characters per line
(index 0..39), but..
 tscreen.ymax := 99; // 100 lines (0..99) in the text
screen buffer !
Note that (unlike the two functions below), tscreen.xmax and tscreen.ymax do not
depend on the visible text panel element on the current display page .

tscreen.auto_scroll
This flag can be set to TRUE by the display application to enable automatic scrolling of
the text screen buffer, whenever tscreen.cy exceeds tscreen.ymax .
By default, automatic scrolling is disabled (tscreen.auto_scroll := FALSE), which
causes excessive lines to get lost (not printed into the text buffer at all).
An example for an automatically scrolling text panel is in the Internet demo application.

tscreen.vis_width
Returns the currently visible width (in characters) of the text screen, which depends on
the size, borders, and font of the first visible text panel element on the current display
page. For example, if the text panel is 320 pixels wide (without borders), and uses an 8-
pixel wide fixed font, the visible width of the text screen will be 40 characters.

tscreen.vis_height
Returns the currently visible width (in characters) of the text screen, which depends on
the size, borders, and font of the first visible text panel element on the current display
page. For example, if the text panel is 240 pixels high (without borders), and uses a 16-
pixel wide fixed font, the visible width of the text screen will be 15 characters.
The 'QuadBlocks' demo uses this function to automatically adjust the size of the
'playing field' (actually a text panel) to the size of the screen, if the application (which
was designed for a 320*240 pixel screen) is loaded into a device with 480*272 pixels.

tscreen.scroll_pos_x,
tscreen.scroll_pos_y

Contains the current horizontal and vertical scrolling position for the display of the
'virtual' text screen on a text panel.
With tscreen.scroll_pos_x=0 and tscreen.scroll_pos_y=0, the upper left corner of the
text panel will show the character in the first column (x=0), and the first line (y=0) of
the virtual text screen (text buffer). An example for the usage of the scroll position can

© MKT / Dok.-Nr. 85122 Version 2.2 92 / 220

../help/progt_01.htm#bslash_panel
../help/progt_01.htm#bslash_panel
../help/progt_01.htm#bslash_panel

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

be found in the application 'ScriptTest3.cvt', function 'ScrollIntoView'. By calling the
user defined function 'ScrollIntoView' in that demo, the last line 'printed' into the text
buffer is made visible, by bringing the scroll-position close enough to the current cursor
position. By virtue of a bargraph with 'write access', the vertical scroll indicator can
even be used as an interactive control element to scroll the text manually (as far as the
size of the screen buffer permits).

tscreen.modified
is TRUE as long as the screen buffer has been modified, but not updated on the LCD
yet.
The script can set it (tscreen.modified := TRUE) to let the system redraw the (text-)
screen as soon as possible, for example after modifying the screen buffer with the
tscreen.cell property. The system will automatically clear this flag when a text-screen-
update is 'done'. This function is also used in the TScreenTest example to force an
update of the screen, and to find out if (and when) the screen has been updated.

Note:
The output will be 'printed' into the text buffer for a multi-line text panel. If no such panel is
visible on the current display page, you will not see it on the screen immedately. But despite
that, the text will become visible (immediately without further print-calls) as soon as the
display program switches to a page which contains a 'Multi-Line Text Panel'.
In the programming tool, the contents of the text screen buffer can be displayed in der right
half of the Script tab. In the combo box in the upper right corner, select 'Show buffer for
Text Panels' instead of 'Hide debug view'.

To create such a text panel (in the definition of one of your display pages), enter the backslash
sequence panel in the format string column on the display page definition tab, or change the type of
an already existing display line from 'Text' (which means a single-line text display) to 'Multi-Line
Text Panel'.

Definition of a text panel on a display page

Don't forget to make the size of the 'Multi-Line Text Panel' large enough ! The screenshot above
shows the definition of such a text-panel, taken from one of the 'Script Demo'-applications in the
programming tool's programs folder. For example, if the panel 's graphic area is 200 pixels wide
and 64 pixels high, and uses an 8 by 16 pixel font, the panel may show up to 25 characters per line
(200/8) and four (64/16) lines of text. Regardless of the actual panel size (which may be different

© MKT / Dok.-Nr. 85122 Version 2.2 93 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

on each display page), the background text buffer can store a maximum of 40 lines with 80
characters per line. Since these limits may depend on the hardware (possibly larger screens in
future), the script can poll the maximum allowed indices into tscreen.cell[Y][X] through
tscreen.ymax and tscreen.xmax .

The colour of the character cells inside the text panel is controlled by the script, not by the display
page definition. Each character can have its unique foreground- and background colour. The sample
application 'LoopTest' contains an example which uses foreground- and background colours
composed with the rgb() function. The example 'TScreenTest' uses the text array as the 'playfield'
for a simple video game ('snake' moving on the screen, controlled via cursor keys), which requires
read- and write-access to the characters in the text buffer, without modifying the colours.

See also: multi-line text panel in the display page definitions (external link, only works in the
HTML-based help system, not in a PDF document).

 8.4 4.10.4 Canvas functions (painting on a tCanvas)

Rudimentary 'canvas' painting functions were already implemented at the time of this writing
(2017-12-14), but still in an early state - too early to be described here.
Please check the online version of this file for the most recent information about painting on a
canvas.

Objects of type tCanvas must be declared as global variables, i.e. between var and endvar in the
script. Only in that case, they will be recognized by the programming tool, and their names listed
where applicable (e.g. as background image in diagrams and similar display elements.
Example from application 'DAQ-Test.cvt', where a tCanvas (name "spectrogram") is used as a
diagram's background image:

var
 tCanvas spectrogram; // graphic time / frequency representation of spectra
("waterfall")
 ...
endvar;

In most cases, a canvas object will be tied to a visual display element. As soon as that display
element is used for the first time (on a display page), the size (width,height in pixels) will be
automatically set unless the script has already set them.
Because the size of a display element (and thus the size of the canvas) may be automatically scaled
to the display's physical resolution, it's good practice to use the object's width and size property
whenever the script paints something into the canvas. This way, your application will still work fine
when loaded into a device with a larger screen (e.g. original design for MKT-View III with 480 *
272 pixels, scaled to 800 * 480 pixels when loaded into an MKT-View IV).

 8.4.1 4.10.4.1 Pixel-wise access (tCanvas method)

The method pixel[Y][X] can be used to access individual pixels in the entire canvas (tCanvas). This
is the most simple, but also the slowest way to manipulate the image in a canvas. Example :

 for y:=0 to spectrogram.height-1 // spectrogram: variable of type tCanvas
 for x:=0 to spectrogram.width-1
 spectrogram.pixel[y][x] := rgb(x,y,x+y);
 next x;

© MKT / Dok.-Nr. 85122 Version 2.2 94 / 220

../help/diagr_01.htm#background_image
http://mkt-sys.de/MKT-CD/upt/help/scripting_01.htm#canvas_functions
../help/progt_01.htm#bslash_panel

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 next y;

As for more advanced canvas-manipulation methods, the effect will not immediately become
visible on the display, because the canvas is painted 'off-screen' (in memory). The effect becomes
visible when a visible display element using the canvas (e.g. a diagram with background image)
appears on the screen.

 8.4.2 4.10.4.2 Filled rectangle (tCanvas method)

rect(x1,y1,x2,y2,c) fills the rectangle between x1/y1 (upper left corner) and x2/y2 (lower right
corner) with the specified colour (c).

 8.4.3 4.10.4.2 Horizontal scroll (tCanvas method)

hscroll(x1,y1,x2,y2,n) horizontally scrolls the rectangular area between x1/y1 and x2/y2 by the
specified number of pixels (n).
With n<0, hscroll scrolls left (towards decreasing 'x' coords),
with n>0, it scrolls right (towards increasing 'x' coords).

 8.4.4 4.10.4.3 Vertical scroll (tCanvas method)

vscroll(x1,y1,x2,y2,n) vertically scrolls the rectangular area between x1/y1 and x2/y2 by the
specified number of pixels (n).
With n<0, vscroll scrolls up (towards decreasing 'y' coords),
with n>0, it scrolls down (towards increasing 'y' coords).
Example from application 'DAQ_Test.cvt' :

 xmax := spectrogram.width-1; // spectrogram: variable of type tCanvas
 ymax := spectrogram.height-1;
 spectrogram.vscroll(0,0, xmax, ymax, 1/*scroll DOWN by one pixel*/);

 8.5 4.10.5 File I/O functions
... are only implemented on systems with a suitable hardware - not necessarily a memory card slot,
because the file I/O functions can also access other media (for example, a ramdisk in some devices,
or a part of the built-in data FLASH memory in other devices). All file access functions begin with
the keyword 'file.' to avoid namespace pollution. The file I/O functions in the script language may
have to be unlocked before use (at least on devices like MKT-View II).

File I/O function overview (follow the links for details) :

• file.create (name, max_size_in_bytes) : creates a new file with the specified name (for write
access)

• file.open (name, o_flags) : opens an existing file (only for read access)

• file.write (handle, data) : writes data to a file

• file.read (handle, destination_variable) : reads data from a file (usually 'binary')

• file.read_line (handle) : reads a line of characters from a text file, and returns it as a string

© MKT / Dok.-Nr. 85122 Version 2.2 95 / 220

../help/daq_01.htm#DAQ_test_application
../help/diagr_01.htm#background_image

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• file.seek (handle, offset, fromwhere) : sets the file pointer

• file.eof (handle) : checks for end-of-file

• file.close (handle) : closes a file, and releases the file handle .

• file.size (handle) : returns the size of an opened file, measured in byte.
• file.delete (name_or_pattern) : Deletes file(s) in certain volumes, e.g.

file.delete("ramdisk/*.*").

• directory.open (path_and_mask, options) : Opens a directory to read it. Returns a handle
when successful.

• directory.read (handle, dir_entry) : Reads the next entry from an opened directory. Returns
TRUE when successful.

• directory.close (handle) : Closes the directory after reading it. Don't forget !

Don't miss the notes on the pseudo-file-system about restrictions of writing and deleting files, and
how to simulate the pseudo-file-system in the programming tool.
See also: 'File Test' demo (uses most of the file I/O-functions listed above).

4.10.5.1 Pseudo-directories ("folders") in the programmable device

Most of MKT's programmable devices don't really support subdirectories or "folders". Many
devices don't even have a memory card interface built inside. Despite that, some of the internal
memory (FLASH ROM and/or RAM) can be accessed like a file storage medium ("disk volume").
The principle of pseudo directories is the same as used for the file transfer. In fact, files created this
way can be accessed through the file transfer utility or via embedded web server :

• "font_flash"
This is another onboad FLASH memory chip (not a FLASH memory card) used to store user
defined fonts (*.fnt), but it can be used to store a few other files, too. When creating a file in
this directory, the maximum expected size must be specified in the 2nd argument of the
file.create function. When closing the file again, unused FLASH sectors will be available for
other files again. This also applies to the other "..._flash"-folders listed here.

• "audio_flash"
Yet another onboard FLASH memory chip (not a FLASH memory card) used to store audio
files (*.wav), but it can also be used to store a few other files.
Note: In a few devices which support audio output, but don't have an extra FLASH chip to
store the digitized audio, the contents of the 'font_flash' and 'audio_flash' directory may
physically be the same. Files placed in this directory can be played back using the interpreter
command 'audio.play' .

• "data_flash"
This is an internal FLASH memory chip (not a FLASH memory card) used for internal data
storage (display pages, imported bitmaps, etc).
Except for an upload of a single *.upt or *.cvt file (via a modified YMODEM-protocol), this
directory is not accessable.

• "memory_card"
This pseudo-directory can be used to access the removable memory card. If this entry is

© MKT / Dok.-Nr. 85122 Version 2.2 96 / 220

../help/ymodem_01.htm
../help/audio_01.htm#icmd_audio
http://www.mkt-sys.de/http_server_info/srv_info_01.htm
../help/filetransfer_01.htm#pseudo_directories

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

missing in the pseudo root directory, the device (or firmware) doesn't support such a storage
medium. The contents of the 'memory_card' folder will be empty if no card is inserted, or
the card's file system is not supported.
In the programming tool, the device 'memory_card' is simulated by default as a subdirectory
named 'sim_mc' (simulated memory card) on the local harddisk. The path to that device is
configurable.

• "ramdisk"
This pseudo-directory can be used to store temporary files, for example bitmap files which
may be displayed on the screen without permanently saving them in FLASH memory. When
creating a file in this directory, the maximum expected size must be specified in the
file.create function. The ''File Test' demo uses this pseudo-disk-drive to create a text file,
write a few lines into it, close it, open it for reading, and read back the lines which had
previously been written. Note that all files in the 'ramdisk' get lost when the device is turned
off, or switched into power-down mode.
When simulating a device (with RAMDISK) in the programming tool, the RAMDISK is
emulated internally - it is not mapped into the host's (PC's) own file system ! To check the
contents of the RAMDISK during a simulation, select this entry in the tool's main menu:
  View .. Simulated file system .. RAMDISK .

In addition to the storage media listed above, the following devices may be accessed like files
(whether they exist depends on the hardware):

• "serial1"
Allows accessing the device's first serial port (RS-232) like a file; at least for read- and write
operations.
In rare cases, the script may need to change the serial port settings when opening it. This can
be achieved by appending a string with the port settings after the pseudo-devicename, for
example:
 hSerial1 := file.open("serial1/9600"); // try to open 1st serial port, and
configure it for 9600 bits/second .
Other examples for accessing the serial port(s) from the script language can be found here
("GPS Simulator").
Like all other 'extended' script functions, accessing the serial ports (through the file I/O
functions) is only possible if the 'extended script functions' (auf deutsch: "Erweiterte Script-
Funktionen") have been unlocked !
If a serial port is used as a LIN bus interface, then it should not be accessed 'like a file'.
Instead, to transmit and receive LIN frames, use the CAN-bus-API (Application Interface).
Details in the LIN bus documentation.

• "serial2"
Similar for the second serial port (if such a port exists, otherwise file.open("serial2") will
return zero, which is an illegal handle value.
An example for accessing this particular port from the script language can be found here
("GPS Simulator").
In the 'MKT-View II', the second serial port is a dedicated port for a GPS receiver.
This is not a standard RS-232 port ! Do not try to connected it to the PC with a standard 9-
pole "Null-modem cable" ! You may damage your PC, because the 9-pole GPS connector
feeds the supply voltage into the external GPS receiver ! Refer to the hardware manual for

© MKT / Dok.-Nr. 85122 Version 2.2 97 / 220

../help/LIN_Bus_01.htm#scripting
../help/sercmd_01.htm#serial_ports_in_the_script_language

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

details, or (if you are unable to find the hardware manual), look here (pinouts of a few 'serial
port' connectors).

Important Notes on the Pseudo File System (PFS)

The PFS is not a normal file system (not FAT, NTFS, ext2,3,...) . Except for the "memory_card"
device, each file is stored as single contiguous block on the storage medium, so they can be
directly accessed via pointer by the CPU - without the need to copy them, sector by sector (at least
for read access).
For that reason, certain operations (which you may know from a 'normal' file system) are
impossible here:

• For FLASH files, the expected file size must be specified upon creation .
It may be closed with a 'shorter' size later, but the file cannot 'grow' larger than the pre-
allocated size while writing.

• Write-operation is only possible for 'new' files (i.e. after file.create, not after file.open)
• Deleting a single file may be possible, but due to the large FLASH sector sizes (64 kByte or

even 128 kByte), the space occupied by the file cannot be freed, because there may be
multiple files stored in a single FLASH sector (much in contrast to a normal file system,
where each file occupies at least one (disk-) sector of 512 bytes).

• Deleting a single file in a RAMDISK cannot move the other files in memory (because other
files may be accessed via pointer for reading, as explained above). Deleting a single file in a
RAMDISK (without re-formatting the RAMDISK) is only possible if that file is still the last
file written to the disk.
For this reason, delete temporary files which your script may have created on the ramdisk as
soon as possible. Deleting it 'too late' will not free the memory.

• Remember that the RAMDISK is not battery-buffered: It will automatically be reformatted
whenever the system is booted, and all files in it will be lost !

To simulate the various STORAGE MEDIA in the programming tool, real 'disk files' are used. The
directories ("folders") used for those files can be configured on the 'Settings' tab in the
programming tool. Double-click into the table to open a file selector if you need to change these
entries:

Directiories for the simulation of storage media in the programming tool

For example, to access files in the "audio_flash" folder, copy the required files into that directory,
or change the directory location (inside the programming tool) to the place on your harddisk where
the program tool can find the files.
It is very advisable that while developing your application, you make a list of all files which your
application may need later (during runtime on the "real target"). Such files may include (but are not
limited to) the following:

• The display application itself (*.cvt or *.upt)
• user-defined fonts (*.fnt)
• bitmaps (*.bmp) which your application may load from a storage medium, i.e. from one of

the pseudo-file folders (not the "normal" bitmaps, which are imported in the programming
tool, because those icons will be saved and transferred along with your *.cvt or *.upt file)

© MKT / Dok.-Nr. 85122 Version 2.2 98 / 220

../help/progt_01.htm#load_icon_from_storage_medium
../help/sercmd_01.htm#serial_port_connectors

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• audio files (*.wav)
• text files (*.txt) in different languages. For example, see the 'MultiLanguageTest': In that

application, the script reads the texts from an external file, to separate the display program
and the displayed text strings.

Remember to backup and distribute all those files along with
your application !

4.10.5.2 Creating or opening a file

file.create(name, max_size_in_bytes) : creates a new file with the specified name (for write access)
If the file already exists, it will be overwritten. If it doesn't exist, it will be created, with an
initial length of zero.
The second parameter ('maximum size in bytes') is used for files in the RAMDISK, to pre-
allocate the maximum required file size in advance. This avoids fragmentation, if multiple
writeable files are opened simultaneously. When successfull, the function returns a positive
'handle' (= an integer value which identifies the file).
Otherwise, the function returns a negative error code.
The filename may contain a pseudo-directory to specify the storage medium.
The parameter 'max_size_in_bytes' (maximum expected size of the file, measured in byte)
must already be specified when creating the file, to avoid fragmentation of the storage
medium (see notes about the RAMDISK).
Example to create and write a small file in the RAMDISK, with minimum error checking :
 var
 int fh; // file handle
 endvar;
 fh := file.create("ramdisk/test.txt",4096); // max 4096
bytes
 if(fh>0) then // successfully created the file ?
 file.write(fh,"First line in the test file.\r\n");
 file.close(fh); // never forget to close files !
 endif;

file.open(name [, o_flags]) : opens an existing file or a device
When successful, the function returns a positive 'handle' (= an integer value which identifies
the file or device).
Otherwise, the function returns a negative error code.
Depending on the storage medium, some (not all, depending on the medium) of the following
optional 'open flags' are supported:

• O_RDONLY : Open for read-only, i.e. the file can only be read but not written. Works
on all media.

• O_WRONLY : Open for write-only, i.e. the file can only be written but not read. Not
supported yet.

• O_RDWR : Open for read- and write access. At the moment (2011-09), doesn't work
with FLASH memory !

• O_TEXT : Open the file as a text file, and check for a BOM (byte order mark) to find
out the encoding-type automatically.

© MKT / Dok.-Nr. 85122 Version 2.2 99 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• O_CREATE : If the to-be-opened file doesn't exist yet, create it. UNIX purists may
use the glorious abbreviation 'O_CREAT' instead of 'O_CREATE'.

Regardless of the file-open mode (O_RDONLY, O_WRONLY, O_RDWR, O_TEXT,
O_CREATE), the file pointer will be set to the begin of the file. This behavious equals the
_rtl_open command, which may be familiar for 'C' developers. To append new data at the
end of an existing file (after re-opening it), the file pointer must be set to the end of the file,
before writing data to it. Use the function file.seek for this purpose.

Example to open a text file, read it line-by-line, and dump the lines to the screen:
 var // declare global variables:
 int fh; // an integer for the file handle
 string temp; // a string named 'temp'
 endvar;
 fh := file.open("ramdisk/test.txt",O_RDONLY | O_TEXT);
 if(fh>0) then // successfully created the file ?
 while(! file.eof(fh))
 temp := file.read_line(fh);
 print("\r\n ", temp); // dump the line to the screen
 endwhile;
 file.close(fh);
 endif;

4.10.5.3 Writing to, and reading from files

After successfully creating or opening a file, the file's handle (integer value returned by file.create
or file.open) can be used to write to, or read from the file.
The following script functions can be used for this purpose.

file.write(handle, data): writes data to a file
In most cases, 'data' will be a string, one or more a string variables, or a string expressions.
(In fact, binary data are not supported yet, because they always turn into a nightmare because
you need to worry about the host's endianness aka "byte order", different storage formats for
all kinds of data types, etc etc - so forget about binary files for a while).
An example for the file.write function can be found under file.create .

file.read(handle, &dest1, separator1, &dest2, ...) : reads structured data from a file
The file.read function can read one or more data fields from a file (in a single call). Compared
to file.read_line, it's more complex, but very flexible. When successfull, it returns the number
of data bytes read from the file. The format (structure) of the data in the file can be specified
by the function's argument list. Each datum (singular of data) must be passed by reference
(preferrably with the address-taking operator & as prefix before the variable name), e.g.:
 nBytesRead := file.read(handle, &sName, ",",
&sAddress,",", &sInfo,"\r\n");
Constant strings between the names of the to-be-read variables are interpreted as 'separators'
between data fields.
Alternatively, to read files with fixed field widths, those widths can be speficied in the
function call after the name of the variable to which the width applies, separated by colon in

© MKT / Dok.-Nr. 85122 Version 2.2 100 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

the argument list. Example:
 nBytesRead := file.read(handle, &sName,20, &sAddress,40,
&sInfo,"\r\n");
In the above example, the string-variable 'sName' will be read with a fixed width of 20
characters (bytes), and 'sAddress' with 40 characters. The rest of the text line (up to the
separator "\r\n", which means Carriage Return + New Line) will be stored in variable 'sInfo'.
For strings read from a file, it's sometimes necessary to restrict the character set to certain
classes of characters. This can be achived in the argument list of file.read by appending the
following tokens (beginning with a colon) directly after the name of the string-variable with
restricted character set:

• :NAME
Valid characters are A..Z, a..z, '_' (underscore), and -except for the first character in
the name- the digits '0' to '9'.
Spaces and control characters like Carriage Return (\r) and New Line (\n) are not
allowed.

• :NUMBER
Valid characters are only the digits '0' to '9', the decimal point ('.'), and the character 'e'
or 'E' which indicates the exponent (in scientific notation like 472.5e3).

Simplified excerpt from the INI file demo, to read test file IniDemo1.ini :

 if(file.read(handle, "[", sSection:NAME, "]", "\r\n") > 0) then
 // entered a new SECTION in the INI file :
 // ..
 elif(file.read(handle, sKey:NAME, "=", sValue, "\r\n") > 0)
then
 // successfully read a key=value pair from the INI file :
 select (sSection)
 case "FileInfo" : // ..
 case "SensorConfig" : // ..
 case "CAN1Setup": // ..
 // ...
 endselect;
 elif(file.read(handle, sGarbage, "\r\n") > 0) then
 // successfully read a line with "something else" (possibly an
EMPTY line) :
 // ..
 else // didn't read anything so guess we reached the end of the
file:
 file.close(handle);
 return TRUE;
 endif;

Explanation of the above example:
With the three calls of file.read(), all possible syntaxes of a line in an INI file are 'tried'.
Only one of those three calls will return a positive result, when reading an INI file line-
by-line (loop not shown here).
The third call (file.read(handle, sGarbage, "\r\n")) will 'skip' any
line which fits neither a section header [Section-Name] nor <Key>=<Value> .
Because the character set for variable 'sKey' is restricted to 'NAME', 'sKey' will only

© MKT / Dok.-Nr. 85122 Version 2.2 101 / 220

../sim_mc/IniDemo1.ini

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

contain single names, but not multiple lines like the comment lines which may be
placed anywhere in an ini file.
Reason: Comment lines (in INI files) begin with a semicolon, which is not a valid
character for a 'NAME'. Without this precaution, the variable 'sKey' might be filled with
data read from multiple lines, up to the first "=" (separator between 'key' and 'value').

In each call of file.read, a maximum of 2048 bytes can be read (parsed) from the file. Each
call of file.read is either completely successfull or won't read (skip) anything from the file at
all. This feature is used in the example explained above to tell comment lines, section header
lines, and data lines from each other.

Complete examples for the file.read function can be found in the 'VT100-Emulation' and in
the INI-file reader application.

file.read_line(handle) : reads a line of characters from a text file (or a serial port), and returns it as a
string

An example using 'file.read_line' can be found under file.open .
To read the lines of a text file line-by-line, you should open the file with the O_TEXT flag as
explained in the file.open command,
because strings read from a file read that way will have the proper character encoding type (
ceDOS, ceANSI, or ceUnicode).

file.eof(handle) : checks for end-of-file
Returns FALSE (0) as long as the end of the file has not been reached yet,
and TRUE (1) when the end-of-file has been reached (for example, after file.read_line has
read the last line of a file).
An example using 'file.eof' can be found under file.open .

file.seek(handle, offset, fromwhere) : sets the file pointer.
'offset' is the absolute or relative file position, measured in bytes.
'fromwhere' (aka 'origin') specifies the meaning of 'offset'. This parameter may be one of the
following constants:

• SEEK_SET Position file relative to the beginning (offset 0 = first byte in the file)
• SEEK_CUR Position file relative to the current position
• SEEK_END Position file relative to the end (offset 0 would be the end of the file)

The value returned by file.seek indicates the new, absolute file pointer, measured in bytes
from the beginning.
For 'SEEK_END', the offset may be zero (i.e. warp to the end of the file) or negative !
Positive offsets in combination with 'SEEK_END' would reference a position past the file's
end, which is illegal.
An example using 'file.seek' is in programs/script_demos/FileTest.cvt .

file.close(handle) : closes a file, and releases the file handle .
An example for the file.close function can be found under file.create .
Never forget to close files ! Especially after a file has been 'written' but not been closed yet,
there may be data waiting in an internal buffer which have not been flushed to disk yet.

© MKT / Dok.-Nr. 85122 Version 2.2 102 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Closing the file will flush all buffers, and (if it's a "real disk file") update the directory and the
FAT (file allocation table).

By default, text files are assumed to be 'plain text with 8 bits per character'. Esoteric formats like
*.doc or *.docx are not, and never will be, supported. When specficying the O_TEXT flag in
file.open(), the runtime library will examine the file for a so-called Byte Order Mark (BOM), to find
out if the file's encoding types automatically (and skip the BOM, so the BOM will not be read by
the first call of file.read_line) :

• UTF-16 with big-endian byte order (BOM = 0xFE, 0xFF)

• UTF-16 with little-endian byte order (BOM = 0xFF, 0xFE)
• UTF-8 (BOM = 0xEF, 0xBB, 0xBF, not really a byte order mark in this case)

If the file contains Unicode text (in one of the encodings listed above), the strings returned by the
file.read_line function will be re-encoded as UTF-8 (not UTF-16 !).
For more info about the byte order mark in text files, see Byte order mark on Wikipedia.

4.10.5.4 Reading a directory

To retrieve a list of files on the memory card (or similar storage media accessable via), the
following functions were added in the script language (2015-03):

directory.open(string path_and_mask)
Opens a directory for reading. Returns a positive handle (integer value) when successful.
Don't assume anything about the value of the handle - just store it in an integer variable and
use it in subsequent calls of directory.read().

directory.read(int handle, tDirEntry *dir_entry)
Reads the next entry from an opened directory.
The second argument must be a pointer to a tDirEntry (see example further below).
Returns TRUE when successful.

directory.close(int handle)
Closes the directory after reading it, and frees resources. Don't forget !

When reading the directory entries (via directory.read), the result is stored in a structure type
'tDirEntry'. A tDirEntry contains the following members:
name filename in the classic 'DOS' format (8+3 characters)
attributes 'DOS'-compatible file attributes. Bitwise combination of cFileAttr constants
year full year number of the file's last modification
month month number (1..12) of the file's last modification
mday day-of-month (1..31) of the file's last modification
hour hour-of-day (0..23) of the file's last modification
minute minute (of the hour, 0..59) of the file's last modification

© MKT / Dok.-Nr. 85122 Version 2.2 103 / 220

http://en.wikipedia.org/wiki/Byte_order_mark

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

sec second (of the minute, 0..59) of the file's last modification
size file size, measured in bytes
medium storage medium. Only for testing

An example for directory.open / read / close is in the the 'App-Selector' example, function
ReadDir().

See also: Overview of file I/O functions, pseudo file system, accessing files via web server, string
processing, string processing, keywords, contents .

 9 4.10.6 Reception and Transmission of CAN messages (via script)
Note: Not all programmable terminals support the reception of 'raw' CAN messages (or LIN
frames) as explained in this chapter.
Devices with CANopen do not support the functions mentioned below (except CAN.status,
which is always available) .
The CAN functions in the script language may have to be unlocked before use (on devices like
MKT-View II,III,IV).

 Overview with the most important CAN functions : can_add_id, can_receive, can_transmit .
Use the command can_add_id or CAN.add_filter to register some CAN- or LIN-bus identifiers for
reception through the can_receive function (or via CAN-receive-handler).
For LIN (instead of CAN), bitwise OR the mask cCanIdBit_LIN to the message identifier. Besides
that, the treatment of LIN frames is almost identical to the treatment of CAN messages throughout
this document.

After registering CAN messages (or LIN frames) for reception, you can use the can_receive
function to poll for messages waiting in the FIFO, and to read the next message from the FIFO.
If can_receive returns TRUE, it has read another message (aka "telegram") from the FIFO, and
copied it into a global variable (structure) named can_rx_msg where your script can process it.

CAN reception via polling or events

To react faster on received CAN/LIN frame (much faster than polling in the main loop), use event
handlers in your script. Event handlers for a single identifier, or a range of identifiers can be
registered by specifying the name of the event handler in can_add_id(), or CAN.add_filter().

The common data type used for transmission and reception of CAN frames is the tCANmsg
structure. It is frequently used when passing a CAN frame as function argument in CAN-receive-

© MKT / Dok.-Nr. 85122 Version 2.2 104 / 220

http://www.mkt-sys.de/http_server_info/srv_info_01.htm#upload

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

handlers to implement higher-level protocols in the script language.

For normal display-applications, CAN reception and transmission (by the programmable terminal)
is controlled by a CAN database (.dbc, aka 'CANdb') which connects display variables to the
outside world via CAN(-"signals"). The script can access those display variables directly. Thus, in
many cases the script doesn't need to care about how those variables are connected to CAN signals.
In rare cases (for example, "gateway"-like applications or rest bus simulations) the script can
encode or decode CAN messages itself (based on the information imported from CAN databases)
using the commands CAN.EncodeMessage and CAN.DecodeMessage.
If there is no suitable DBC file available, the script can alternatively access the datafield of the
received or to-be-transmitted CAN message via the bitfield component, and convert the signal's
value from the physical unit into (or from) the value on the CAN bus itself.

 9.1 4.10.6.1 can_add_id(<CAN-ID>) : Register a CAN message ID for reception

Adds the specified CAN message identifier to an internal list (in the CAN driver), so it will be
received from now on, and put in the script's CAN receive FIFO.
The script program only receives such messages with the can_receive function. CAN-Messages
which are *not* registered for reception this way may be processed somewhere else (for example in
the "CAN-signal-decoder" or in the CANopen stack, but not in the script).
The maximum number of CAN messages identifiers which can be registered for reception by the
script is 32. If that's not enough, register whole ranges of CAN message identifiers via
CAN.add_filter().

The most significant bits (31..29) of 'CAN-ID' specify the bus number and the 11/29-bit-flag
("Extended ID"). For better readability, bitwise-or the constants cCanIdBit_Bus2, cCanIdBit_Bus3,
cCanIdBit_Extd as required to the message-ID (in bits 10..0 or 28..0 of the parameter).
Examples:

 can_add_id(0x123); // start receiving 11-
bit ID 0x123 on CAN1
 can_add_id(cCanIdBit_Bus2 | cCanIdBit_Extd | 0x123); // start receiving 29-
bit ID 0x123 on CAN2

Since 2013-05, can_add_id accepts an optional second parameter, to specify the name of a CAN-
Receive-Handler (which can be written in the script language). Example:
 can_add_id(0x123, CAN_Handler_ID123); // Call 'CAN_Handler_ID123' on reception of this
message ID

Details about CAN-receive handlers in chapter 4.11.4. (CAN-Receive Handler).

 9.2 4.10.6.2 CAN.add_filter(<filter>, <mask>, <receive_handler>)
Similar to can_add_id, but this command registers an entire range of CAN message identifiers for
reception.

The CAN-receive-filter operates as follows:

© MKT / Dok.-Nr. 85122 Version 2.2 105 / 220

../help/can_add_id
../help/candb_01.htm

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

The CAN identifier of a received message is bitwise ANDed with the 'mask' parameter.
The result is then compared with the 'filter' parameter.
If all bits (which are not zero in 'mask') match, the received message will be passed on to the
script (either to the optional receive-handler, or placed in the script's CAN-receive-Fifo).
In other words: All cleared bits in 'mask' are considered 'don't care' (i.e. ignored by the filter);
all bits set in 'mask' must match (between received ID and the 'filter' value).

Examples:
CAN.add_filter(0x2ABCD00, 0x2FFFFF00); // receive extended IDs 0x0ABCD00 to
0x0ABCDFF
CAN.add_filter(0x000, 0x000, addr(MyCanRxHandler)); // receive standard IDs with a
handler
// Note: As in other CAN functions of the script language,
// the 'extended' flag which indicates a 29-bit-ID is encoded in bit 29,
// and the bus number (0..3) is encoded as a two-bit value in bits 31..30 of the ID.

Only one range of CAN-message-identifiers can be registered per interface, in addition to the
'individually' registered (single) message identifiers from can_add_id.
This function had to be implemented because J1939 encodes a lot of information (for example the
sender's 'Source Address', SA) inside the 29-bit CAN message ID.
This renders the CAN acceptance filtering, which is implemented 'in silicon' (hardware) in most
microcontrollers, almost useless because any non-trivial J1939 node is doomed(!) to receive 'almost
everything' this way.
The result from registering 'all CAN message identifiers' for reception may cause an enormous CPU
load, so try to keep the number of registered CAN identifiers as low as possible.
Handlers registered by CAN.add_filter() will only be invoked if none of the handlers registered
'individually' (via can_add_id) had returned TRUE. Details about the handler calling sequence are
here.

 9.3 4.10.6.3 can_receive (function to poll for CAN reception)

Tries to read the next received CAN message from a FIFO.
When successful, the message is copied into can_rx_msg, and the result is 1 (one) .
Otherwise (empty FIFO), can_rx_msg remains unchanged, and the result is 0 (zero) .

Note: If received CAN messages are not 'polled' but processed in a user-defined CAN-receive-
handler, it's not neccessary (and, in fact, illegal) to call 'can_receive' from the handler ! The
received CAN message will be passed via pointer (as argument) to the handler, and -if the handler
returns with exit code 1 or 'TRUE'- the message was intercepted by the CAN message handler, and
will not be copied into the CAN-Rx-FIFO at all !
Using a CAN-receive handler is the preferred method (if extra processing of received messages is
necessary in the script at all) because it wastes less CPU time than "polling".

 9.4 4.10.6.4 can_rx_fifo_usage (function)

Returns the number of CAN messages still waiting in the receive FIFO (without reading a
message).
A return value of zero means "the FIFO is completely empty at the moment".

© MKT / Dok.-Nr. 85122 Version 2.2 106 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

A return value of 2047 (!) means "the FIFO is completely full" (and, if another message was
received by the CAN controller, it would be lost for the script).

 9.5 4.10.6.5 can_transmit (procedure)

Command to send a CAN message (directly, layer 2). This command comes in three different
variants (without and with a parameters in the argument list):

Variant 1: can_transmit without an argument list:
Tries to send the contents of can_tx_msg (CAN message structure defined below). The global
variable 'can_tx_msg' is filled with contents by the script, and transmitted my calling can_transmit:

 can_tx_msg.id := 0x334; // set CAN message ID (and bus number in the upper
bits)
 can_tx_msg.len := 2; // set the data length code (number of data bytes)
 can_tx_msg.b[0] := 0x11; // set the first data byte
 can_tx_msg.b[1] := 0x22; // set the second data byte
 can_transmit; // send the contents of can_tx_msg to the CAN bus

Variant 2: can_transmit called with a parameter (argument):
Instead of using the global variable 'can_tx_msg', a variable (preferrably a local variable) of type
'tCANmsg' is filled by the script, and the address of that variable is passed as an argument to the
procedure 'can_transmit(<address of the message to be sent>) .
The following example calls can_transmit (with parameter) from a CAN-receive handler, after
assembling the transmitted message in a local variable ("responseMsg"):

 //--
 func CAN_Handler_A(tCANmsg ptr pRcvdCANmsg)
 // A CAN-Receive-Handler for a certain CAN message identifier.
 // Must be registered via 'can_add_id', along with the CAN message ID.
 // Interrupts the normal script processing, and must RETURN to the caller
 // a.s.a.p. ! Uses a LOCAL variable for transmission (not can_tx_msg).
 // Thus can_tx_msg can safely be used in the script's main loop,
 // even if the main loop may be interrupted at any time by this handler.
 local tCANmsg responseMsg; // a local variable with type 'CAN message'
 responseMsg := pRcvdCANmsg[0]; // copy the received CAN message into the
response
 responseMsg.id := pRcvdCANmsg.id+1; // response CAN ID := received CAN ID + 1
 // Note: The upper two bits in tCANmsg.id contain the zero-based BUS
NUMBER !
 can_transmit(responseMsg); // send a response via CAN immediately
 return TRUE;
 // returning TRUE means: "the received message was processed HERE,
 // do NOT place it in the script's CAN-receive-FIFO".
 endfunc; // end CAN_Handler_A

 ... somewhere in the initialisation : ...

 // Register a received CAN ID, and install a CAN-receive-handler for it:
 can_add_id(C_CANID_RX_A, addr(CAN_Handler_A));

© MKT / Dok.-Nr. 85122 Version 2.2 107 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Variant 3: can_transmit with two parameters: Besides the address of the to-be-transmitted
message (from variant 2), a 'CAN transmit option' can be specified:

 can_transmit(responseMsg, cCanTx_Normal); // if necessary, wait before
transmission
 can_transmit(responseMsg, cCanTx_NoWait); // don't wait here if TX-
buffer is full

At the time of this writing (2016-06-09), the following options could be passed to the can_transmit
function:

• cCanTx_Normal : If necessary, wait for a few milliseconds until the CAN bus can transmit
another message.
Due to the CAN driver's transmit buffer (FIFO), this feature allows the script to produce a
CAN bus load of almost 100 %, with the main loop slowed down by the 'blocking' call of
can_transmit() so that all messages get through without a transmit FIFO overflow.

• cCanTx_NoWait : Don't wait if the CAN transmit buffer is completely full, but simply
discard it.
This may happen if the script tries to send more messages than the bus can accept, or if there
is no-one out there (yet) who can acknowledge the CAN transmission.
The option CAN_TX_NOWAIT should be used if can_transmit is called from an event
handler, for example a script timer event.

An example for the periodic transmission of CAN messages is in the application 'TimerEvents.cvt'
(look for "OnCANtxTimer").

Please note that this procedure usually returns 'immediately', before the transmission actually took
place, because all transmitted CAN messages (not just those sent from the script) are first placed in
an interrupt-driven CAN transmit buffer. This is why can_transmit cannot return a "status"
(like 'transmission complete', etc).
To check for CAN errors during transmission, poll CAN.status, bitmask cCANStatusTxError.

To send RTR frames (Remote Transmit Request), bitwise-OR the constant cCanRTR in the length
field of the message.

Only use this function if you know exactly what you are doing !
Sending a 'wrong' CAN message into an unknown network may have potentially dangerous
consequences !

 9.6 4.10.6.6 can_rx_msg, can_tx_msg

(global variables of type tCANmsg)

From the script's point of view, the 'can_rx_msg' structure holds the last received CAN message for
processing. It was filled by the previous call of the can_receive function. If the script doesn't call

© MKT / Dok.-Nr. 85122 Version 2.2 108 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

can_receive, and as long as can_receive doesn't return TRUE (=success), the contents of
can_rx_msg will not change. The following components of can_rx_msg (and similar, can_tx_msg
for transmission) can be accessed like variables by the script program:

.id
holds the CAN-bus-identifier in the least significant 11 (or 29) bits of this 32-bit integer
variable, plus an optional 11/29-bit flag ("extended CAN identifier flag") in bit 29, and the
zero-based CAN BUS NUMBER (!) in the most significant bits (bits 31..30). Please note that
bit numbers are always start at zero, thus a 32-bit integer value (such as can_rx_msg.id)
contains bit 0 (least significant bit) to 31 (most significant bit). There is no "bit 32" in a 32-bit
integer !
For LIN, the 6-bit 'frame ID' ranges from 0 to 63 = 0x3F; in addition it should be bitwise OR-
ed with the constant cCanIdBit_LIN to inform the CAN API that this is a LIN frame, not a
CAN message.

.len
Length of the DATA FIELD in bytes. CAN frames can have 0 (zero) to 8 byte data fields,
LIN allows 1 to 8 data bytes per frames.
The upper bits of this field may contain special FLAGS like cCanRTR (Remote Transmission
Request, see example ScriptTest3.cvt, SendRTR()).

.tim
Timestamp of the received CAN message, using the CAN driver's hardware specific
timestamp frequency. This 32-bit integer value will roll over from 0xFFFFFFFF to
0x00000000 after about 29 hours, because the CAN driver's timestamp clock frequency is 40
kHz (at least for the ARM-7 CPUs with an internal CPU clock of 72 MHz). If you *really*
need to convert a timestamp difference (as 32-bit integer value) into seconds or similar, divide
the difference by the constant 'cTimestampFrequency' to get a timestamp difference in
seconds. Note that other script timer functions use the same 'timestamp'. See also:
system.timestamp ("current time", using the same unit) .

.b[N]
Accesses the N-th byte in the CAN data field as an 8-bit unsigned integer (value range 0 to
255).

.dw[N]
Accesses the N-th Doubleword (N : 0..1) in the CAN data field. A doubleword ('DWORD')
contains 32 bits, the value range is 0x00000000 to 0xFFFFFFFF (hex).
Note that (in contrast to the components listed further below) the array-index is a
'doubleword'-index, not a byte-index. Thus the only allowed indices are 0 (=first doubleword)
and 1 (=second doubleword).
Example to copy the entire 8-byte CAN data field (taken from 'ScriptTest3.CVT') :

 // The 8 databytes are copied as two 32-bit integers,
 // because that's faster on an ARM-CPU than a byte-copying-loop:
 response.dw[0] := can_rx_msg.dw[0]; // copy first doubleword (4 bytes)
 response.dw[1] := can_rx_msg.dw[1]; // copy second doubleword (4 bytes)

© MKT / Dok.-Nr. 85122 Version 2.2 109 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Unlike the components of 'can_rx_msg' and 'can_tx_msg' listed further below, the DWORD-
wise access explained above is also possible for 'normal' varibles declared as type tCANmsg
(also via pointer).

.i16[N]
Accesses the N-th and N+1-th byte in the CAN data field as a 16-bit signed integer, using
'Intel' byte order (aka Little-Endian, or 'least significant byte first).
The sign is expanded from bit 15 into the upper bits of the 32-bit integer result, so the range is
-32768 to +32767.

.u16[N]
Accesses the N-th and N+1-th byte in the CAN data field as a 16-bit unsigned integer, using
'Intel' byte order (aka Little-Endian, or 'least significant byte first). Unlike 'i16', the sign bit is
not expanded, so the result ranges from 0 to 65536.

.i32[N]
Accesses the N-th to N+3-th byte in the CAN data field as a 32-bit signed integer, using 'Intel'
byte order (aka Little-Endian, or 'least significant byte first).
Note that the above three methods to access a CAN data field are very fast, but they cannot
cross 'arbitrary' bit boundaries (thus, their syntax mimicks a BYTE-ARRAY, not a BIT-
ARRAY). The "bitfield" method explained further below is slower, but more versatile.

.m16[N]
Similar to '.i16', but uses big endian byte order aka 'Motorola' format.

.m32[N]
Similar to '.i32', but uses big endian byte order aka 'Motorola' format.

.bitfield[<index of the signal's least significant bit in the CAN-message> , <number of bits>
]

Accesses a part of the data field in a CAN messages as a 'bitfield', containing an unsigned
integer value in 'Intel' byte order (least significant byte first).
Note that regardless of the signal type, bits in a CAN message are always numbered according
to the following table. As usual for binary numbers, the most significant databit is on the left
side in this graphic representation; the numbers for 8 bits within a byte always runs from 0
(=LSB, right) to 7 (=MSB, left).
The green cells in the following table show an example defined as
can_rx_msg.bitfield[18, 15]
 ("Intel" byte order, LSBit at bit 18 in the CAN frame, and 15 bits for this bitfield).
Support for signals with 'Motorola' byte order (most significant byte first) was not projected
by the time of this writing.

Numbering of bits in a CAN- or LIN- data field
(green: 15-bit signal example; .bitfield[18, 15])
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

byte[0] 7 6 5 4 3 2 1 0

byte[1] 15 14 13 12 13 10 9 8

© MKT / Dok.-Nr. 85122 Version 2.2 110 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

byte[2] 23 22 21 20 19 18 17 16

byte[3] 31 30 29 28 27 26 25 24

byte[4] 39 38 37 36 35 34 33 32

byte[5] 47 46 45 44 43 42 41 40

byte[6] 55 54 53 52 51 50 49 48

byte[7] 63 62 61 60 59 58 57 56

The global variable 'can_tx_msg' has exactly the same structure as 'can_rx_msg' . The only
difference is that can_rx_msg is used for reception, while can_tx_msg is used for transmission
(from the script's, i.e. the device's, point of view). Typically, both are used in the implementation of
a simple 'CAN protocol handler'.

The script test application 'ScriptTest3.cvt' contains a few examples for the reception and
transmission of CAN messages through the script interpreter.

Notes and hints:
To test the script's CAN functions in the programming tool, connect your PC to the CAN bus
using one of the supported CAN interfaces. The script language's CAN RX FIFO also works
in the simulator, using live data received from the CAN bus.
If that is not possible (no CAN bus available in the lab, or no suitable CAN interface on the
PC), use the programming tool's CAN playback utility. It allows you to play back recorded
CAN messages (stored in a simple text file) into the simulator/emulator, as if they were
received from a 'real' CAN interface.

A valuable tool for the development of CAN protocols in the script language is the Trace
History, which most devices support (also those without an integrated CAN logger / snooper).
The history can be read out remotely via web browser, for example using the URL
http://upt/trace.htm . In contrast to external CAN diagnostic tools, the trace history display
distinguishes between sent and received CAN messages (from the device's point of view),
which an normal external CAN bus monitor can't (from his point of view, all CAN messages
are received).

 9.7 4.10.6.7 CAN.DecodeMessage(tCANmsg ptr msg)

This function is intended to be called from CAN receive handlers, after reception of a CAN
message, if the signals need to be processed immediately after reception (inside the CAN receive
handler). It updates all display variables which are possibly mapped to signals in the specified CAN
message, described in a Database for CAN (*.dbc aka 'CANdb').
This may be necessary for 'very demanding' applications, because the CAN receive handler is
invoked by the system before decoding the display-variables which are possibly contained in the
message.
For message(-identifiers) which are not described in a database, CAN.DecodeMessage does
'nothing' besides wasting time searching for the CAN message identifier. Thus, if you know that the
received CAN message is not contained in the database (imported DBC), don't call
CAN.DecodeMessage() on it.
If the message was found (with a matching CAN-ID and, if multiplexed, a matching multiplexer),

© MKT / Dok.-Nr. 85122 Version 2.2 111 / 220

../help/candb_01.htm#multiplexer
../help/candb_01.htm
http://upt/trace.htm
../help/progt_01.htm#logfile_replay_utility

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

CAN.DecodeMessage() returns TRUE.
If the message was not found (no matching CAN-ID or, if multiplexed, no matching multiplexer),
CAN.DecodeMessage() returns FALSE.

Input:
Address of the to-be-decoded CAN message (aka CAN frame with up to 8 data bytes).

Output:
All display variable (display.XYZ) which are connected to CAN signals,
depending on the imported CAN database (.dbc file).

Note:
CAN.DecodeMessage() is typically used in CAN receive handlers.

Test / Example:
See CAN.EncodeMessage() .

 9.8 4.10.6.8 CAN.EncodeMessage(int msgID, tCANmsg ptr msg)
This function is -more or less- the counterpart to CAN.DecodeMessage.
For a given CAN message identifier (first argument), it assembles the data field of a CAN message,
and places the result in the specified message buffer (second argument).

The signal values for the CAN data field are collected from all display variables which are
connected to the specified message, depending on the loaded Database for CAN (*.dbc aka
'CANdb').
If the message-ID was found in the database, CAN.EncodeMessage() returns TRUE.
If the message-ID was not found in the database, CAN.EncodeMessage() returns FALSE.

Notes:

• CAN.EncodeMessage() doesn't transmit send a CAN message. It only encodes it in
memory !

• For transmission, you can pass the address of the message to the CAN Transmit command.
• If you need to know which variables are actually contained in the message, call

CAN.MessageIDToVarName with the same ID used to encode the message.

A test and example for CAN.EncodeMessage (and CAN.DecodeMessage) is contained in the
application programs/script_demos/CANstress.cvt .
Here a simplified excerpt from it, to demonstrate the principle. The signals 'ThreeSines1',
'ThreeSines2', 'ThreeSines3' have been imported (into display-variables) from a CAN database
('MktStandardSignals1.dbc'). The following script fragment first sets them to different values
(1,2,3), then maps them into a CAN message (three 16-bit fields in this case), and finally checks the
inverse function (CAN.DecodeMessage should restore the original values of ThreeSines1..3):

 // Test CAN.EncodeMessage(int msgID, tCANmsg ptr msg) :
display.ThreeSines1 := 1; // set display variable (input for CAN.EncodeMessage)
display.ThreeSines2 := 2;
display.ThreeSines3 := 3;
pVarDef := display.GetVarDefinition("ThreeSines1"); // get database entry for
this display variable

© MKT / Dok.-Nr. 85122 Version 2.2 112 / 220

../programs/script_demos/CANstress.cvt
../help/candb_01.htm
../help/candb_01.htm#import_signal_defs

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

CAN.EncodeMessage(pVarDef.CAN_Msg_ID, MyTxMessage); // encode CAN message (but
don't transmit it yet)
 // Check the encoded CAN message (which contains 3 signals here):
if((MyTxMessage.w[0] != 1) or (MyTxMessage.w[1] != 2) or (MyTxMessage.w[2] !=
3)) then
 print("\nSomething wrong in the database, or CAN.EncodeMessage() ?");
endif;
 // At this point, the values from 'ThreeSines1' to 'ThreeSines3'
 // have been mapped into the CAN message (MyTxMessage) by CAN.EncodeMessage().
 // On this occasion, also check the inverse function, CAN.DecodeMessage():
display.ThreeSines1 := 0; // clear to see if CAN.DecodeMessage() really sets
these...
display.ThreeSines2 := 0;
display.ThreeSines3 := 0;
CAN.DecodeMessage(MyTxMessage); // TEST, should overwrite
display.ThreeSines1...3
if((display.ThreeSines1 != 1) or (display.ThreeSines2 != 2) or
(display.ThreeSines3 != 3)) then
 print("\nBug in CAN.DecodeMessage() ?");
endif;

 9.9 4.10.6.9 CAN.VarNameToMessageID(string sVarName)
Queries the CAN database (imported from a DBC file) for the CAN message identifier used to
received or send a certain (display-) variable.
When successful, CAN.VarNameToMessageID returns the numeric CAN message identifier,
otherwise cCanInvalidID (= 0xFFFFFFFF, which is not a valid CAN message ID).
Notes:

• In many cases, a CAN message doesn't transport only ONE, but MULTIPLE signals.

• To retrieve a list of ALL variables which are transported in the same CAN message,
repeatedly call CAN.MessageIDToVarName(), beginning with n=0 for the first variable
(signal) contained in the message.

• Bits 31 and 30 of the return value (message ID) contain the zero-based CAN-bus-number !
• To retrieve other parameters of the CAN-signal related with the display variable (e.g. CAN

message layout and scaling), use display.GetVarDefinition() .

4.10.6.10 CAN.MessageIDToVarName(int iMessageID, int n)
Queries the CAN database (imported from a DBC file) for the name of the n-th display variable
contained in a certain CAN message.
When successful, CAN.MessageIDToVarName returns the name of the n-th display variable in the
message, otherwise an empty string.
Notes:

• In many cases, a CAN message doesn't transport only ONE, but MULTIPLE signals.
Argument n=0 retrieves the FIRST name, n=1 the SECOND, etc.

• To find out the CAN message ID for a given display variable name (like "EngineRPM"), use
CAN.VarNameToMessageID().

© MKT / Dok.-Nr. 85122 Version 2.2 113 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• Bits 31 and 30 of the CAN message ID (iMessageID) contain the zero-based CAN-bus-
number !

4.10.6.11 Special CAN-bus diagnostic functions

Most of the following 'special' CAN functions only work on certain targets, but not in the
programming tool / simulator . The first function argument is usually the CAN port number. Use
one of the following integer constants for the port number:
 cPortCAN1 (1st CAN bus),
 cPortCAN2 (2nd CAN bus) .

The application script_demos/ErrFrame.CVT uses some of these functions to test a CAN bus with
error frames.

CAN.status(<port>)
Returns the current status of the CAN bus controller on the specified CAN port (cPortCAN1
oder cPortCAN2).
The return value is a bitwise combination of the following flags (constants):

cCANStatusOK (0) 'no problem' (at least not with this CAN port)

cCANStatusHWFault (1) unspecific problem with the CAN hardware or this port

cCANStatusRxOverflow (2) CAN receive buffer overflow

cCANStatusTxOverflow (4) CAN transmit buffer overflow

cCANStatusIRQFailed (8) Only occurred on old systems ("too many interrupts per second").

cCANStatusTxError (16)
Error while trying to send a CAN frame
(no Acknowledge, nothing connected, missing terminator ?)

cCANStatusBusError (32)
One of the 'more serious' CAN bus errors (possibly now 'error passive',
i.e. no active transmission until error counters decremented)

cCANStatusWarning (64) Warning (the precise definition of a 'CAN warning' depends on the controller)

cCANStatusBusOff (128)

'BUS-Off'. This is the most serious CAN error status bit.
The controller doesn't try to communicate with the bus anymore,
neither active (transmit) nor passive (receive).
A brute-force method to recover from the Bus-Off state
is the command system.reboot .

In contrast to the CAN functions listed further below, CAN.status is also available in
firmware variants with CANopen protokoll.

CAN.rx_counter(<port>)
Retrieves the number of CAN messages received through the specified port, since power-on.
In the programming tool, the result includes the number of messages 'simulated' with the
CAN Logfile Player.

CAN.tx_counter(<port>)
Retrieves the number of CAN messages sent through the specified port, since power-on.

CAN.tx_enable

© MKT / Dok.-Nr. 85122 Version 2.2 114 / 220

../help/progt_01.htm#logfile_replay_utility

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Accesses the 'transmit enable'-flag for all periodically transmitted CAN-signals (from the
device's point of view), which have been imported from a CAN-database for transmission.
This is the same flag as 'signals.tx_enable' in the display interpreter. Details in the document
about 'CANdb'.
Note: Even with CAN.tx_enable = FALSE, the script command can_transmit can transmit !
CAN.tx_enable only affects the 'scheduler' for periodic or event-driven transmission of CAN
signals.

CAN.err_counter(<port>)
Retrieves the number of any errors and warnings, counted by the CAN-driver's interrupt
service handler since power-on.
The counter includes 'comparably harmless' errors, for example bit-stuffing errors, which
sporadically occur even in a 'good' CAN network. This function is only intended for
diagnostic purposes; the expectable error rate depends largely on the bus load and on the
environment (EMC) !

CAN.err_register(<port>)
Retrieves the last content of the CAN controller's 'error register', captured by the CAN-
driver's interrupt service handler when the last CAN error interrupt occurred.
Because the format of the CAN controller's error register is extremely hardware dependent,
specifying the meaning of the bits in that register would be far beyond the scope of this
documentation.

• For MKT-View II (with CPU = LPC2468), see NXP's "UM10237" (LPC24XX User
Manual), Chapter 18.8.4, "Interrupt and Capture Register";

• For MKT-View III (with CPU = LPC1788), see NXP's "UM10470" (LPC178x/7x
User Manual), Chapter 20.7.4, "Interrupt and Capture Register", pages 514 to 517 in
UM10470 Rev. 1.5;

• For devices with other controllers, and in the programming tool (simulator), the value
returned by CAN.err_register() is meaningless !

CAN.err_frame_counter(<port>)
Retrieves the number of "error frames" received on the specified port, since power-on.
Strictly defined, it's the number of "bit stuffing errors" signalized by the CAN bus controller.
A bit-stuffing error means six or more dominant bits on the physical layer.
Ideally, there should be no error frames on a CAN at all. The error-frame-counter allows to
check this.

CAN.PulseOut(<port> , <duration in microseconds>)
Generates a pulse (dominant state) on the specified CAN port, with the specified length
(duration) in microseconds.
Rarely used; for example to send CAN error frames (= six dominant bits, which is impossible
with a 'normal' CAN controller.
The function only works on a suitable target (LPC / ARM-7), not on a PC, and not on any
Linux-based system. A sample script which uses this procedure is in the 'ErrFrame'
application in the script_demos folder. It was designed to send CAN error frames, to check if
certain CAN testers were able to detect such CAN bus errors. For example, see the

© MKT / Dok.-Nr. 85122 Version 2.2 115 / 220

../help/candb_01.htm#candb_transmit

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

ErrFrame.CVT application.
Do not use this function in a critial environment (vehicle, etc),
unless you are absolutely sure about the possible consequences !

CAN.timestamp_offset
This variable can be used to 'move' the timestamps when converting CAN messages (type
tCANmsg) into text. The internal timestamp generator starts at zero when booting the system.
But when recording received messages in a file (via script), the timestamps shall often be
'relative' to the trigger point (which is also determined via script). This can be achieved as
follows:

 CAN.timestamp_offset := system.timestamp; // offset for converting to
Vector ASC format

Note: The timestamps delivered by the CAN driver are not affected by
CAN.timestamp_offset .
CAN.timestamp_offset only affects the conversion of type tCANmsg into a string ("Vector
ASC") with the string() function.
The unit of CAN.timestamp_offset is the same as for system.timestamp (timer ticks,
frequency=cTimestampFrequency).

CAN.string_format
Specifies the format for converting CAN messages (script data type tCANmsg) into strings,
using the string()-function (or an equivalent typecast). Example:

 CAN.string_format := sfVectorASC; // when converting tCANmsg to string,
use "Vector ASC" format

CAN.test_id := <CAN-Message-ID>
Special command for hard- and software tests. Only available in devices with a special
firmware (available on request for the MKT-View IV). Details only available in the german
document.

CAN.test_action := <N>
Defines 'what to do' on reception of a CAN-message with identifier = CAN.test_id.
This action is already performed in the CAN interrupt, thus the latency is extremely small.
Details only available in the german document.

 10 4.10.7 Controlling the programmable display pages from the script
Any procedure or function beginning with the keyword "display" controls the programmable
display pages in some way.

display.goto_page(<page>)
Switches to the specified display page.
The new page can be specified either as a page number (integer, deprecated), or as a page's
name (string, favourized).

© MKT / Dok.-Nr. 85122 Version 2.2 116 / 220

../help/scripting_49.htm#CAN_test_action
../help/scripting_49.htm#CAN_test_id
../help/scripting_49.htm#CAN_test_id

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

display.page_name
Retrieves the name of the current display page (read-only).

display.page_index
Retrieves the zero-based index of the current display page (read-only).
Remember, the "first" page of every display application has index "zero", not "one" !
To switch to a different display page (from the script), use display.goto_page .

display.num_pages
Retrieves the number of pages which exist in the display application (read-only).
This function can be used to let the script run through a 'loop with all display-pages', as used
in the 'page menu' example.

display.num_lines
Retrieves the number of lines on the current display page (read-only).
This function can be used to let the script iterate through 'all elements on the current display
page'.

display.page[n].name
Retrieves the name of the n-th display page (read-only).
Note that the page index 'n' runs from zero to display.num_pages minus one !

display.exec(< command string >)
Lets the display-interpreter execute any display command. This command must be used with
caution ! It should be avoided if not absolutely necessary, because it may severely slow down
the script. This may happen because the display commands are interpreted, not compiled .
Example:
 display.exec("bl(0)"); // turn the display's backlight off via display
interpreter
To avoid calling the display interpreter from the script, use 'flag variables', which can be
polled in global or local events by the display. This way, the script will not be slowed down
(or even blocked for dozens of milliseconds) by the execution of the display command. A
safe example for the display.exec command can be found in the 'traffic light' demo.

display.pixels_x
Retrieves the width of the LC display, measured in pixels (read-only). Used in the
QuadBlocks demo to switch to a display page designed for 'landscape' or 'portrait' mode of the
screen.

display.pixels_y
Retrieves the height of the LC display, measured in pixels (read-only).

display.fg_color
Returns the default foreground- aka text-colour of the current display page.
In the programming tool, this colour value is defined in the im 'Display Page Header' (Default
Text Colour).

© MKT / Dok.-Nr. 85122 Version 2.2 117 / 220

../help/progt_01.htm#page_def_header
../help/progt_01.htm#event_defs
../help/progt_01.htm#interpreter_commands

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

display.bg_color
Returns the default background colour of the current display page.
In the programming tool, this colour value is defined in the im 'Display Page Header' (Default
Background Colour).

display.night
Read- and write access to the boolean day/night colour switching flag. Example:

 display.night := TRUE; // use colour scheme 'Night'
 display.night := FALSE; // use colour scheme 'Day'

display.menu_mode , display.menu_index
This is the script language's equivalent to the display interpreter's "mm", and "mi" function.
(Entspricht der Funktion "mm" bzw "mi" des Display-Interpreters.)
Examples in the application 'DisplayTest.cvt' .
Possible menu modes are defined as built-in constants in the script language:
 mmOff : neither 'navigating' nor 'editing'
 mmNavigate : navigating between different fields on the page
 mmEdit : editing the (usually numeric) value in an input-field

display.EditValueMin, display.EditValueMax
Specifies the limiting range when editing a numeric value via 'up/down' (increment/decrement
the value using cursor keys or rotary encoder) in an edit field on any programmed display
page. This function was added in 2016-06, because (unlike 'display variables') a simple script
variable does not contain any information about the permitted value range. Use the 'Begin
Edit' event in your script's OnControlEvent-handler, to set those limiting values whenever the
operator begins to edit such a field.
Both display.EditValueMin and display.EditValueMax can be read or written by the script at
any time, but their values may be overwritten by the system when beginning to edit a normal
display variable, using the min- and max values as defined in the 'Variables' definition table in
the UPT programming tool. This happens shortly before OnControlEvent is called with
event=evBeginEdit. So even when editing display variables, your script can still override the
edit field's limiting range.

display.elem[<Element-Name>].visible
The script can show or hide a display element by setting or clearing the 'visible'-flag.
Example:
 display.elem["Arrow"].visible := TRUE; // show the element
named "Arrow"
 display.elem["Popup"].visible := FALSE; // hide the element
named "Popup"
Note: When a display page is loaded from ROM (due to a 'page switch'), all elements are
visible by default.
Making an element invisible which was previously visible causes an automatic update of the
entire display page.

© MKT / Dok.-Nr. 85122 Version 2.2 118 / 220

../help/progt_01.htm#var_properties
../help/progt_01.htm#edit_field_custom_min_max_range
../help/progt_01.htm#icmd_menu
../help/progt_01.htm#icmd_menu
../help/progt_01.htm#icmd_menu
../help/colours_01.htm#day_and_night_switching
../help/progt_01.htm#page_def_header

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

display.elem[<Element-Name>].xyz or
display.elem[<Element-Index>].xyz

This is the script language's equivalent to the display interpreter's function
"disp.<Element>.xyz" (follow the link for a list of accessable components, here simply called
'xyz').
Examples (more in the 'display test' application):

// Show the NAME of the currently selected element :
print("\r\n Name:", display.elem[display.menu_index].na);

display.elem[i].bc := rgb(255,127,127); // set background to
lightred

The element can be addressed by its index as in the above example, or by its name. Example:
display.elem["BtnNext"].bc := rgb(0,i,255-i); // modify 1st
background colour
display.elem["BtnNext"].b2 := rgb(0,255-i,i); // modify 2nd
background colour

In the last example, "BtnNext" is the name of a UPT display element, specified in the page
definition table. The script runtime determines which of the two addressing modes is used by
the data type of the argument between the squared brackets: [Integer] = by index, [String] =
by name. In conjunction with events like evClick, evBeginEdit, evEndEdit, an array element
may also be addressed by its index (within the current display page). To simplify this, the
element-index is passed as function argument 'param1' to the script's control event handler
(OnControlEvent).

Note (also applies to display.elem_by_id[]):
If there is no display element with the specified name, index, or identifier on the current
display page,
the read- or write access to the non-existing element will not cause a runtime-error, and
the script won't stop.
A write-access will simply 'do nothing' (the assigned value is discarded).
A read-access will return zeroes or empty strings, depending on the component type.

display.elem_by_id[<Control-ID>].xyz
Similar as above (display.elem), but accesses a display element by its control-ID (which
needs to be defined in the page definition table).
Accessing a display element this way simplifies modifying it in an event handler (in the script
language), because the control-ID is passed in the handler's function argument list. Details
about this "advanced" topic are here .

display.dia.XYZ
Invokes one of the commands to control the Y(t)- or X/Y-diagram on the current display
page.
Details are in a separate document about the display interpreter's 'diagram' commands.

© MKT / Dok.-Nr. 85122 Version 2.2 119 / 220

../help/diagr_01.htm#dia_commands
../help/progt_01.htm#display_elements_with_control_ID
../help/pgacc_01.htm#disp_components
../help/pgacc_01.htm#disp_components
../help/progt_01.htm#display_element_name
../help/pgacc_01.htm#disp_components
../help/pgacc_01.htm#script_display_elem

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

'XYZ' is the token listed in that document, for example clear, run, ready, ch[N].min,
ch[N].max, sc.xmin, sc.xmax, unix_time, etc.
At the time of this writing (2018-12-13), controlling diagrams via script was 'under
construction' again, and up-to-date info was only available in german language.

display.arr[row][column][component],
display.arr.dim(n_rows, n_columns, n_components),
display.arr.n_rows, .n_columns, .n_components

Allows direct access to the old display interpreter's 'global' array, which (in the interest of
downward compatibility) can still be used to draw polygons into diagrams (see above,
display.dia.XYZ). Details about the display interpreter's 'global' array (arr[][][]) are here.

display.pause := TRUE;
Stops updating the screen (with the current "programmed display page"). This can be used for
a crude way of synchronizing the display to the script application: Pause the display before
calculating a new set of 'display values' in the script, and resume when finished with that.
This command is typically used to pause the display output temporarily, for example to
ensure the consistency (auf Deutsch: Widerspruchsfreiheit) of the screen while the script
prepares some values which "always belong together". Without such precautions, due to semi-
multitasking of the script and the display, some of those values shown on the display may be
"old", and others may be "new".

display.pause := FALSE;
Resumes updating the screen, i.e. switches back to normal periodic screen update (screen
updated 'in the background', while the script runs).
The test/demo application "LoopTest.cvt" uses the display.pause flag to avoid flicker, while
filling the text-screen with new data.

display.redraw := TRUE;
Sets a flag to let the UPT display interpreter update the current display page as soon as
possible. On completion, the flag display.redraw will be cleared automatically.
It is usually not necessary to force a display update this way, because the display interpreter
periodically compares the values of all (numeric) variables associated with the elements on
the current display page; and -if a value has changed since the last update- automatically
redraws the element.

display.UpdateDiagram
This command may be issued after calculating new values (in an array), to let a diagram
update the curve display (showing the array data). If a diagram channel uses an array as "data
source" as described here, then the 'UpdateDiagram'-command will also copy the data from
the array into the diagram's own channel memory ("double buffering" to keep the display
consistent).

display.GetVarDefinition(<variable>)
Special function to query the definition of a display variable.
Allows retrieving almost any parameters specified on the tabsheet "Variables" (in the
programming tool) via script during normal runtime. For simple display-applications, this

© MKT / Dok.-Nr. 85122 Version 2.2 120 / 220

../help/diagr_01.htm#plotting_values_from_script_arrays
../help/array_01.htm
../help/scripting_49.htm#display_dia
../help/diagr_01.htm#display_dia_unix_time

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

function is not required.
Input argument : <variable> = name of the variable (as string) or definition table index (as
integer value).
If successfull, the returned value is a pointer to (= "the address of") a structure of type
tDisplayVarDef .
Otherwise (no display-variable found for the specified name or index), GetVarDefinition
returns a NULL pointer.
Some of the components of structure tDisplayVarDef are direct equivalents of similar-named
columns on the tabsheet 'Variables' in the programming tool:

.Name
Name of the Display-Variable (without prefix "display.")

.AccessRights
Access rights; in certain cases this also defines the 'direction' of a transfer
("write"=transmit or "read"=receive from the terminal's point of view).

.BusNr
Bus number. For CAN signals, this parameter is defined when importing a DBC file.

.CAN_Msg_ID
CAN message identifier (if this variable is connected to a "CAN signal", which turns it
into a 'Network Variable').
In contrast to tCANmsg.id, this component does not contain bus numbers encoded in
the upper bits !

.CommChannel
Kommunication channel. Contains the channel number from column "Channel" on the
programming tool's 'Variables' definition table.

.CopIndex
CANopen Object Index (1..65535). Matches the first part of column 'OD-Index' in the
'Variables' table.
If the value is nonzero, the display variable becomes part of the CANopen device's
Object Dictionary, and can be accessed externally via SDO.

.CopSubindex
CANopen Sub-Index (0..255). Used in combination with the OD-Index. Details in the
description of the Object Dictionary.

.CycleTime_ms
For CAN signals ("CANdb"), this parameter is used as periodic transmit cycle, or for
receive timeout monitoring.

.MinValue

© MKT / Dok.-Nr. 85122 Version 2.2 121 / 220

../help/objdict_49.htm#od_basics
../help/objdict_49.htm
../help/progt_01.htm#vars_in_own_od
../help/progt_01.htm#var_properties
../help/progt_01.htm#vars_on_candb_signals
../help/progt_01.htm#var_properties

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Minimum value of the scaled variable. Sometimes used as 'limit' for the display or in
numeric edit fields.

.MaxValue
Maximum value of the scaled variable. Sometimes used as 'limit' for the display or in
numeric edit fields.
In most cases, both 'MinValue' and 'MaxValue' are zero, which means 'no limits'.

.MuxValue
Numeric (integer) value of an optional MULTIPLEXER / "Multiplexor" from the CAN
database ("CANdb", importied from *.DBC).

.MuxLSBit
Zero-based Index of the multiplexer's least significant bit in the CAN data field (0..63).
For details, see 'CANdb'.

.MuxNumBits
Number of data bits of the multiplexer in the CAN data field (1..16).

.MuxByteOrder
Byte order of the multiplexer in the CAN data field, if this contains more than 8 bits
(extremely rare!) .
Encoded as a single character: M=Motorola (big endian), I=Intel (little endian).

.RawSigType
Type of the 'raw' signal transferred via CAN ("CANdb") : (U)nsigned, (S)igned, (F)loat,
or (I)nvalid.

.RawSigByteOrder
Byte order of the 'raw' (CAN-) signal: (M)otorola, (I)ntel.

.RawSigLSBit
Zero-based index of the raw signal's least significant bit (0..63). For details, see
'CANdb'.

.RawSigNumBits
Number of data bits of the 'raw' signal (on the CAN bus, or similar) .

.ScaleFactor
Scaling factor. The 'raw' CAN Signal is multiplied with this floating point value, to
convert it into the 'display' unit.

.ScaleOffset
Skaling offset. After the multiplication (see above), this floating point value is added to
the result.

© MKT / Dok.-Nr. 85122 Version 2.2 122 / 220

../help/candb_01.htm#intro
../help/candb_01.htm#multiplexer

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

.SDO_Data_Type
Data type 'a la CANopen'. Required to transfer values via SDO (Service Data Object),
and for proper PDO mapping (Process Data Object).

.Unit
A string of up to 8 characters with the physical display unit. Usually originates from the
imported database (DBC file).

.UpdateTime_ms
Update time in milliseconds (for the display).

.ValueTable
A string of value/text pairs for the display "as String". At the time of this writing (2015-
06), no function in the script yet.

Please note: Almost all of the components listed above (in tDisplayVarDef) must be treated
as 'read-only' by the script !
If you need to modify the definition of display-variables via script at the normal runtime (for
'extremely special applications'), please get in contact with the software development engineer
at MKT Systemtechnik.
An example using display.GetVarDefinition() is in the application ScriptTest3.cvt:

 var
 string sVarName; // name of a display-variable
 tDisplayVarDef ptr pVarDef; // definition of a display-variable
 endvar;

 ...

 sVarName := "FourSines1"; // name of a display-variable

 // Show CAN message layout of this *DISPLAY*-variable:
 pVarDef := display.GetVarDefinition(sVarName);
 print("\n ", sVarName, " : bits ", pVarDef.RawSigLSBit, "..",
 pVarDef.RawSigLSBit + pVarDef.RawSigNumBits - 1);

See also ... about interaction between script and display application :

• Accessing display variables from the script

• Accessing script variables from the display interpreter

• Invoking script procedures from the display interpreter

• Invoking script functions from display pages (to retrieve a text strings for the display, used
for internationalisation)

• Asynchronous event handling (and how to intercept certain events in the script language)

© MKT / Dok.-Nr. 85122 Version 2.2 123 / 220

../help/progt_49.htm#author

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

4.10.8 'System' functions, etc

Built-in procedures or function begin with the keyword "system". They access some low-level
system parameters. At the time of this writing (2016-09-07), the following system functions were
implemented :
 system.analog_in .audio_ptt .audio_vol .beep .click_vol .dwInputs .dwOutputs .dwFirmware
.dwVersion
 system.exec .feed_watchdog .led .nv[0..31] .reboot .resources .serial_nr .shutdown .temp
.timestamp .ti_ms
 system.unix_time .unix_time_boot system.vsup system.vcap

system.analog_in[0] .. system.analog_in[3]
These functions read the current value for the specified onboard analog input. The MKT-
View III has two analog inputs (indices 0 and 1), the MKT-View IV four 'onboard' analog
inputs (indices 0 to 3). Details about how to connect the analog inputs can only be found in
the device specific datasheet. In the MKT-View III, the analog inputs are connected to pins 12
and 13 of the 14-pin Lemo connector; the "analog ground" is on pin 14. In the MKT-View IV,
the two additional analog inputs on connector 'X3' can be polled by the script via
'system.analog_in[2]' and 'system.analog_in[3]'.
In contrast to the old display interpreter functions "ain1" and "ain2", the script funktion
system.analog_in[] returns a floating point number, ranging from 0.0 to 1.0, regardless of the
voltage divider (populated on the board), and regardless of the A/D converter's resolution
("number of bits"). Even future devices with high-resolution A/D converters, or with digital
signal processing and oversampling, will stick to this scale range.
By default, the voltage dividers in MKT-View III / IV are designed for a maximum input
voltage (scale end) of 15 Volts.
Only converters that support negative input voltages (which didn't exist in any MKT-View at
the time of this writing) will deliver values ranging from -1.0 to +1.0. The same applies to
analog inputs sampled with the DAQ Unit (fast-sampling Data Acquisition).
In the programming tool / simulator, the analog input values can be set as explained here.
A simple example using the analog inputs can be loaded from
programs/script_demos/AnalogIn.cvt. It uses digital lowpass filters to 'smooth' the samples
read from the analog inputs, and plots the results along with the non-filtered 'raw' samples as
an Y(t) diagram on the screen:

© MKT / Dok.-Nr. 85122 Version 2.2 124 / 220

../help/progt_01.htm#ifunc_ain
../help/daq_01.htm#analog_channel_selector
../help/progt_49.htm#ifunc_ain

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Screenshot from sample application 'AnalogIn.cvt' on an MKT-View III.
Red: Ch. 1,raw; orange: Ch. 1,filtered; blue: Ch. 2,raw; purple: Ch. 2,filtered

Another example for the analog inputs (measuring temperatures in °C with simple 22 kOhm
NTCs as external sensors) is in the demo application programs/script_demos/Thermo.cvt .

system.audio_vol
Reads or writes the audio output volume aka "Speaker Volume". The same parameter can be
modified (and permanently saved) in the terminal's system menu. The function is only
implemented in certain terminals with an analog audio output - see feature matrix . A similar
command also exists in the display interpreter. Unfortunately, the value range and scaling
depends on the hardware. For example, the CVT-MIL 320 used a digital potentiometer with
128 linear steps (not logarithmic!), value range 0 to 127. See also: Audio settings and signal
paths in the MKT-View III / IV.

system.audio_ptt
Controls a relais for the audio output's 'Push-To-Talk'-feature. Only exists in a few 'special'
devices.

system.beep(frequency [,time [,volume [,freq_mod [,ampl_mod]]]])
Produce a simple sound using the system's built-in 'beeper' (buzzer, piezo speaker, or similar).
Similar as the 'beep' command in the older display interpreter.
frequency : Tone frequency in Hertz. A value of zero turns the tone off.
time: length of the tone, measused in 100-millisecond-steps. If this and all following
parameters are missing (or zero), the tone will be "endless" until you turn it off with the
command system.beep(0).
volume: Relative volume (loudness) in percent, ranging from 0 to 100. The beeper is
controlled with a pulse width modulator which can be used to produce different output levels,
but the harmonic spectrum of the generated tone is also affected by the PWM duty cycle. A
volume of 100 produces the loudest possible tone with a 1:1 duty cycle. freq_mod: Frequency
modulation. Can be used to produce siren-like sounds, or "chirps" and "whistles". Unit is
"Hertz per 100 milliseconds". If the value is positive, the frequency increases as long as the
sound is audible; if the value is negative the frequency decreases.
ampl_mod: Amplitude modulation. Can be used to produce sounds which start with a low

© MKT / Dok.-Nr. 85122 Version 2.2 125 / 220

../help/beep_01.htm#icmd_beep
../help/audio_01.htm#audio_settings
../help/audio_01.htm#audio_settings
../help/featmatr.htm
../programs/script_demos/Thermo.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

volume and then get louder. Not very effective because of the pulse-with modulation, where a
volume of 10% can hardly be distinguished from a volume of 50% .
Example: system.beep(150,20,50,100)
 produces a 2-second, "chirped" tone which rises from 150 Hz to 2150 Hz (=150 Hz + 2
seconds * 100 Hz/0.1sec)

system.play_notes(string)
Similar as (but a bit more versatile than) system.beep. Uses the same 'beeper' (buzzer, piezo
speaker, etc) to play a short string of notes. The format (syntax of the 'note string') is the same
as for the old interpreter command "play" (follow the link for examples with short 'melody'
strings).
The command already returns before playing has finished, i.e. it doesn't consume significant
time, and can safely be used in event handlers.

system.click_vol
Only for devices with touchscreen. Reads or writes the 'touchscreen click' volume. The same
parameter can be modified (and permanently saved) in the terminal's system menu.

system.backlight
Only for devices with backlit display. Sets (or reads) the normal backlight intensity / day,
same as in the system setup under "Display Setup" / "Brightness".
Value range (same as for other 'LED pulse width modulators'): 8 Bit, 0 (off) ... 255 (max).

system.backlight_low
Only for devices with backlit display. Sets (or reads) the dimmed backlight intensity / night
time or after backlight-timeout ("power saving mode"), same as in the system setup under
"Display Setup" / "Low Brightness".

system.bl_timeout
Only for devices with backlit display. Sets (or reads) the timeout-setting in seconds after
which the backlight switches from "on / bright" to "off or dimmed", same as in the system
setup under "Display Setup" / "LCD-Off-Time".

system.dwInputs
Access the system's onboard digital inputs as a 32-bit 'doubleword'. Depending on the target
hardware, up to (!) 32 digital inputs can be read in a single access (MKT-View III / IV have
two onboard digital inputs). Bit zero reflects the state of the first input, etc. Use a formal
assignment to read the current state of the digital inputs, for example:
iDigitalInputs := system.dwInputs; // poll all onboard digital
inputs
if(iDigitalInputs & 0x00000001) then // check bit zero =
first input
 print("DigIn1 = high");
else
 print("DigIn1 = low");
endif;
An example for measuring (low) input frequencies on a digital input can be found in the

© MKT / Dok.-Nr. 85122 Version 2.2 126 / 220

../help/progt_01.htm#upt_system_menu
../help/progt_01.htm#upt_system_menu
../help/progt_01.htm#upt_system_menu
../help/progt_01.htm#upt_system_menu
../help/beep_01.htm#icmd_play

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

application programs/script_demos/DigitalInputFrequency.cvt .
See also: Frequency- and event counter for the digital inputs .

system.dwOutputs
Access the system's onboard digital outputs as a 32-bit 'doubleword'. Depending on the target
hardware, up to (!) 32 digital inputs can be set in a single access (of course, not all devices
have onboard digital I/O lines at all, and for most devices, it's impossible to set all digital
outputs exactly at the same time, due to hardware restrictions / internal 'I/O-bus'). Bit zero
drives the first output, etc. Use a formal assignment to read, modify, and write the current
state of the digital outputs, for example:
system.dwOutputs := system.dwOutputs | 0x0001; // set the
first onboard-output
system.dwOutputs := system.dwOutputs & (~0x0001); // clear the
first onboard-output
system.dwOutputs := system.dwOutputs EXOR 0x0001; // toggle
the first onboard-output
A sample script which uses digital onboard I/O is the 'TrafficLight' application .

system.dwFirmware
Retrieves the hardware-specific firmware 'article number' as a 32-bit integer value.
Example:
 print("FW-Art-Nr.=",system.dwFirmware);

Output (when the above example is executed on different target systems):

 FW-Art-Nr.=11314 (on an MKT-View II with 'CANdb' firmware)
 FW-Art-Nr.=11315 (on an MKT-View II with 'CANopen' firmware)
 FW-Art-Nr.=11392 (on an MKT-View III with 'CANdb' firmware)
 FW-Art-Nr.=11393 (on an MKT-View III with 'CANopen' firmware)
 FW-Art-Nr.=11222 (when running on a PC in the 'simulator')

system.dwKeyMatrix
Returns the current state of the keyboard matrix as bit combination (up to 32 bits in a
'DWORD').
Each key is represented by a single bit, thus this function can be used to poll 'exotic' key
combinations, for which which getkey doesn't have an equivalent code (for example, Shift-
Enter, etc).
The bit combination returned by system.dwKeyMatrix is similar to the display interpreter
funktion km and (for devices with CANopen V4) Object 0x5001:

• Bit 0..7 : Function keys F1 (bit 0) to F8 (bit 7) .
• Bit 8..15 : Cursor left (bit 8), right(9), up(10), down(11);

 ENTER (bit 12), ESCAPE (bit 13), first shift key (bit 14), second shift key (bit 15)
.

• Bit 16..23: Numeric keys '0' (bit 16) .. '7' (bit 23) .

© MKT / Dok.-Nr. 85122 Version 2.2 127 / 220

../help/objdict_01.htm#obj_5001
../help/progt_01.htm#ifunc_km
../help/featmatr.htm

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• Bit 24..31: Numeric keys '8' (bit 24) .. '9' (bit 25),
 "Dot" (bit 26), "Plus" or "Plus/Minus" (bit 27),
 Tab key or 'two horizontal arrows'-key (bit 28),
 Questionmark, Help, or similar 'help' key (Bit 29),
 "A to Z", "Alpha", or similar special key for 'alphanumeric input' : Bit 30,
 "Backspace" or "special arrow pointing left" : Bit 31 .

To improve the readability of the script, use only the following symbolic constants in bitwise
AND-combinations with the keyboard matrix (and in the 'OnKeyMatrixChange'-handler):

 kmF1 .. kmF8 : Function keys F1 to F8
 kmLeft : Cursor keys..
 kmRight
 kmUp
 kmDown
 kmEnter : ENTER key
 kmEscape : ESCAPE key
 kmShift1 : 1st Shift key
 kmShift2 : 2nd Shift key
 kmDigit0 .. kmDigit9 : decimal keys (exist in a few devices only)
 kmDot : decimal separator (dot, sometimes comma)
 kmPlus : "PLUS" (sometimes labelled "+/-" or "* +")
 kmTab : TAB key, or "two horizontal arrows"
 kmMode : Questionmark, HELP, HELP/MODE, or similar labelled key
 kmAtoZ : key labelled "ABC"/"A"/"Alph" (for TEXT INPUT)
 kmBackspace: Backspace,"special arrow pointing left", or similar labelled
key

To react quickly on any change of the keyboard matrix (without wasteful polling
system.dwKeyMatrix), implement the OnKeyMatrixChange handler in your application.
An example is in the application script_demos/KeyMatrix.cvt .

system.dwVersion
Retrieves the firmware version number (in the target device) as a 32-bit integer value.
Format:
 bits 31 .. 24 = major version number (Hauptversionsnummer)
 bits 23 .. 16 = minor version number (Nebenversionsnummer)
 bits 15 .. 8 = revision number
 bits 7 .. 0 = build nummer
Example:
 print("FW-Version=0x"+hex(system.dwVersion,8));
 -> output: FW-Version=0x01020304 (if the firmware version was "V1.2.3 - build 4")

system.exec(filename)
Loads the speficied file (*.cvt or *.upt, aka 'App') from the memory card, or the specified
pseudo-filesystem-path into RAM (not FLASH!), recompiles the script (which is contained in
the new application), and finally launches the new application. The application in the device's
internal FLASH (for example, the 'App Selector') remains intact, so by calling

© MKT / Dok.-Nr. 85122 Version 2.2 128 / 220

http://en.wikipedia.org/wiki/Application_software

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 system.reboot
the 'reloaded' application can switch back into the 'App Selector'.

Screenshot of the 'Application-Selector'. Click on the image for details.

In simulator mode ("running the app in the programming tool"), system.exec() is only enabled
if the running program was saved (on disk) since the last modification.

Note: This function only exists in devices with a "large" RAM, like MKT-View III / IV. It is
not available in older devices like MKT-View I / II !

See also (helpful for 'reloaded' scripts): Variable declarations with the 'noinit' attribute.

system.counter_mode

Operation mode of the optional (*) frequency- or event counter. At the time of this writing
(2017-10-11), the following modes were implemented:

• 0 : Counter off (passive). This is the default state after power-on.
• 1 : Simple counter for positive edges on digital input #1
• 2 : Simple counter for positive edges on digital input #2
• 3 : Two independent frequency- or pulse counters on the digital inputs
• 4 : Complex counter with quadrature input, suitable for most incremental encoders.

The phase between input 1 and 2 indicates the direction (increment or decrement).
The counter value increments or decrements on any edge (rising or falling) on any of
the two inputs.
The same applies to the measured frequency, which may become negative when the
encoder is turned counter-clockwise.

© MKT / Dok.-Nr. 85122 Version 2.2 129 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• 5 : Up/down-counter with pulse input (trigger on rising edge) on digital input #1, and
direction control on input #2 (LOW=increment, HIGH=decrement).

system.counter_gate_time
Gate time for frequency measurements with the 'digital counter' described above.
Unit: Milliseconds. Default: 1000 [ms].

system.counter_frequency[0]
Returns the measured frequency in Hertz (first input, thus array index zero). Thanks to the
measuring principle, even with gate times below 1000 milliseconds the frequency resolution
may be better than one Hertz. Thus the result is always a floating point number (float) !

system.counter_frequency[1]
Frequency measured on the second digital input. Only available in mode 3 ('two independent
frequency- or pulse counters').

system.counter_value[0]
Number of pulses or events counted on the first input (thus array index zero). In contrast to
the frequency, this value is always read- and writeable (even without stopping the counter),
and doesn't depend on the gate time.
In some counter modes (e.g. up/down counter), the result may be negative.

system.counter_value[1]
Number of pulses or events (edges) counted on the second digital input. Only available in
mode 3 ('two independent frequency- or pulse counters').

(*) The frequency- and event-counter was initially implemented in an MKT-View III / IV in
October 2017.
 In older devices (like MKT-View II) it is not available.
 Input voltage and maximum frequency are specified in the device's datasheet.
 Typical values are: Vin_low <= 3.0 V, Vin_high >= 6.5 V, f_max = 20 kHz (with modified
input lowpass).
 On request, the digital inputs (voltage dividers with lowpass filters) can be modified
 for 'TTL'-levels (threshold approx. 3 V) and higher frequencies (MKT-View IV: up to 200
kHz without lowpass).
 Please note: The counter is one of the 'extended', unlockable script features.
An example for measuring frequencies on the digital (onboard) inputs is in the application
programs/script_demos/DigitalInputFrequency.cvt .

© MKT / Dok.-Nr. 85122 Version 2.2 130 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

system.feed_watchdog(< number of milliseconds >)
This command should only be used if really necessary, for example if an event handler, or a
function invoked via backslash sequence in a display element's format string, is expected to
require more than 400 milliseconds for execution. Fortunately, in most applications this is
hardly ever necessary, because any 'long-lasting' operations can easily be moved into the
script's main loop (main task), and in the event handler, you will only set a flag (variable)
which can be polled in the main loop. Setting a variable takes much less than a millisecond,
so you don't need to feed the watchdog in a well-designed event handler.
In the following paragraph, the term 'event handler' also applies to a function invoked via
backslash sequence in the format string of a display element (as in the 'GetText' example).
Technical details follow...
Endless loops, and long calulations must be avoided in event handlers, because they will
render the device inoperable (or, from an operator's point of view 'it crashes'). To avoid this
(in case of an erroneous script), the run time system will terminate the function call, if the
function (event handler) doesn't return to the caller fast enough (i.e. in less than 200
milliseconds). In the normal script context, there is no such limit because the pseudo-
multitasking guarantees that the device stays 'responsive' even if the script gets stuck in an
endless loop without calling any 'waiting' function.
If the maximum event handler execution time is not sufficient, the forced termination can be
avoided with a command like this:

 system.feed_watchdog(500); // Feed the script's watchdog for another 500 milliseconds

As already mentioned, this consequence of doing this may be a sluggish user response, but
also protocol timeouts (because as long as the event handler is busy, the device will not do
much else). So whereever possible, avoid this command, and re-write your event handlers so
they return to the caller as fast as possible. Then you won't need to feed the watchdog at all.

system.led(index, pattern, red, green, blue)
Only for devices with multi-colour LEDs. Sets the blink-pattern and RGB colour mixture for
the specified LED (as usual, indices begin at zero, not one).
Parameters:

 index : 0=first LED (topmost on the MKT-View 2) ... 2=third LED
 pattern: 8-bit blink pattern. Each bit controls a 100-millisecond
interval.
 After a cycle of 8 * 100 ms the whole cycle starts again.
 The 8-bit blink patterns of all LEDs are synchronized.
 red, green, blue: specifies the 3 * 8-bit colour mixture (see examples).

If a certain LED parameter (pattern, red, green, blue) shall not be modified, pass -1 (a
negative value) instead.
Examples:

 system.led(0, 0xFF, 0xFF, 0x00, 0x00); // 1st LED permanently on, RED
 system.led(1, 0x0F, 0x00, 0xFF, 0x00); // 2nd LED slowly blinking GREEN

© MKT / Dok.-Nr. 85122 Version 2.2 131 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 system.led(2, 0x55, 0x3F, 0x3F, 0xFF); // 3rd LED rapidly flashing BLUE
 system.led(2, 0x00, -1, -1, -1); // 3rd LED off without changing
the colour
 system.led(2, 0xFF, -1, -1, -1); // 3rd LED on without changing
the colour

Some devices only have a GREEN and a RED LED (sometimes combined as a CANopen-
Status-Indikator as in HBG-18 und HBG-22). For such devices, these LEDs are assigned as
follows:

• The 'first LED' (index 0) shall emit GREEN light.
• The 'second LED' (index 1) shall emit RED light.
• Both LEDs (or colour components) together are ORANGE (which some folks say is

yellow..)
• Since these LEDs can be driven independently, a complementary bit pattern like 0x55

and 0xAA lets a bicolour LED flash green/red.

system.nv[0..31]
Accesses one of the 32 'non-volatile values', like the nv-function in the UPT display
interpreter. The same restrictions concerning EEPROM cell endurance apply. Details here.
Setting a new value as in the following example doesn't immediately 'write' the value into the
system's configuration EEPROM, but into a latch:
 system.nv[0] := 12345; // write 32-bit integer into the non-
volatile memory latch
To store the contents of the 32 'latches' (integer values) permanently in the EEPROM, and
you are really sure that no other nv[]-values need to be set in future, carefully invoke the
following command to write the contents of he latches into the sluggish EEPROM (which
may take a considerable amount of time, depending on temperature and 'fitness' of the
EEPROM chip):
 system.nv_save; // write all modified nv locations into the
EEPROM.

See also: Defining the initial values for the nv[]-array in the programming tool ,
how to prevent overwriting values in the nv[]-array when loading a new application.

system.reboot
Reboots the system (including a complete hardware reset). Can be used to recover from errors
which cannot be 'cured' by other means, for example after the CAN-controller entered the
'bus-off' state.
This command is also used to switch back from any application launched by the 'App-
Selektor' into the 'App-Selektor'.
Note: Your script should close any file that it had opened before calling system.reboot.
Otherwise, you may get an error message like
 "System has not been shut down properly - this may damage the memory card".

system.resources

© MKT / Dok.-Nr. 85122 Version 2.2 132 / 220

../help/progt_01.htm#prevent_overwriting_nv_when_loading_new_app
../help/progt_01.htm#setting_nv_default_values
../help/progt_01.htm#ifunc_nv

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

This function is just an aid for debugging. It returns a combined indicator of 'remaining
system resources', measured in percent.
The value is the minimum of the following script-related system parameters:

• Remaining stack space (used for local script variables, etc)
• Remaining dynamic memory ("heap") available for the script

If the system resources drop below 10 percent, the script may contain a bug (for example,
illegal recursion, allocate too many strings or arrays, etc).
The reason can be examined in the debugger/simulator (memory usage display), integrated in
the programming tool.
The function system.resources works the same way in the 'real' target as well as in the
programming tool.

system.serial_nr
Retrieves the device's serial number as an integer value.
If a device doesn't support unique serial numbers (stored in an EEPROM), the result is zero.
Example:
 print("Serial Number="+itoa(system.serial_nr,5));

system.shutdown
Forces the system to shut itself down ("programmatically").
This is the script's equivalent for the display interpreter command sys.poff ("power off").
Depending on the hardware and the system configuration, the device can be powered on again
(after this) via keyboard, CAN-activity, or via supply voltage cycle. Details are in document
Nr. 85115 (PDF), chapter "Power on/off" .
In the bus sleep mode demo, this command is used to turn an MKT-View (II/III/IV) off after
60 seconds without any activity on the CAN bus.
The script may be informed about any kind of system-shutdown, if it contains the
OnSystemShutdown handler. The handler will receive the reason for being shut down as an
integer parameter (iReason):

 1 = "manual" shutdown (by the operator, via key or shutdown screen)
 2 = automatic shutdown because the supply voltage got too low
 3 = automatic shutdown due to temperature (usually "too hot")
 0 = shutdown for some other reason

A simple example for an OnSystemShutdown-handler can be found in
programs/script_demos/SystemTest.cvt .

system.temp
Returns the current temperature inside the device, measured in the vincinity of the TFT
displays (which is the most 'heat-intolerant' unit). It can be displayed on the screen for testing
purposes, or copied into a variable for logging, etc.
In contrast to the older display interpreter function 'sys.temp' the script function 'system.temp'
returns a floating point value, scaled into °C (degrees Celsius).
Note: The same temperature is also used for the 'automatic shutdown on excess temperature',

© MKT / Dok.-Nr. 85122 Version 2.2 133 / 220

../help/progt_01.htm#ifunc_sys_temp
../help/touchscreen_01.htm#shutdown_screen
../help/progt_01.htm#art85115
../help/progt_01.htm#icmd_sys_poff

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

as explained in a chapter with that title in MKT's document number 85115 .

system.timestamp
Retrieves the system's local timestamp generator value. The same generator also produces the
timestamps for the CAN driver, thus by comparing system.timestamp with the timestamp in a
received CAN message, you can tell, down to the fraction of a millisecond, how much time
has elapsed since the reception of that message. Together with the wait_ms() command, you
can also use this function to synchronize the activity of the script.
Example: Send a precisely timed 'answer' for a CAN message :
display.pause := TRUE; // don't let the display-interpreter
interfere for a short time
Tdiff := can_rx_msg.tim - system.timestamp; // timestamp
difference between 'now'
 // and a certain
CAN message reception
Tdiff := (1000*Tdiff)/cTimestampFrequency; // convert to
milliseconds
wait_ms(100-Tdiff); // wait until 100 ms have passed since
CAN msg reception
can_transmit;
display.pause := FALSE; // resume normal display operation
Note: This example isn't 100 percent bullet-proof. It only works if this code is executed within 100 milliseconds
after the time of a CAN message reception. To mininize the risk of wasting too much time for the display-
update, the display should be paused immediately after reception of the CAN message which shall be 'answered'.
Remember that the display terminal isn't a programmable logic controller with 'guaranteed' maximum latencies,
even if there is a fast pre-emptive multitasking kernel running "under the hood".

The 32-bit timestamp is generated by a hardware timer, which starts at zero during power-on,
and then increments at a hardware-depending frequency specified as constant
cTimestampFrequency. The timer frequency is typically in the range of 40 kHz, so a
signed 32-bit number will overflow from 0x7FFFFFFF (large positive value) to 0x80000000
(very negative value) after about 2^31 / 40000 Hz = 53687 seconds, or 14 hours. Despite that,
the 32-bit integer arithmetic (as in the example shown above) will still give a valid
DIFFERENCE between two timestamps, even if a timestamp wrapped from 0x7FFFFFFF to
0x80000000 or from 0xFFFFFFFF to 0x00000000 . This is the reason why you must not
convert a timestamp into seconds (or any other unit) before calculating a timestamp-
difference. First calculate the difference (as in the example above, "Tdiff := can_rx_msg.time
- system.timestamp"), then convert the timestamp difference into any unit you like (as in the
example, "Tdiff := (1000*Tdiff) / cTimestampFrequency").

See also: programmable timers, timer events, CAN.timestamp_offset, StartStopwatch(),
ReadStopwatch_ms() .

system.timestamp_sec
Retrieves the system's local timestamp generator value (system.timestamp), converted into
seconds.

© MKT / Dok.-Nr. 85122 Version 2.2 134 / 220

http://www.mkt-sys.de/MKT-CD/handbuecher/art85115_Sysmenu_Setup_EN.pdf

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

In contrast to system.unix_time, the local timestamp generator alway starts at zero when
turning on the device. Thus, when stored in a 32-bit float value with a 24-bit mantissa, it
delivers a better resolution than the Unix time: After running for 24 hours, the mantissa must
store a value of 24*60*60 seconds. Divided by 2^24, the resulting resolution is approximately
5 milliseconds. If a better resolution is required, the timestamp must be stored in a double (64
bit).
The same unit for 'time' ("number of seconds since power-on") is also used when accessing
the DAQ unit, and to synchronize the display of Y(t)-diagrams (also for event handlers in the
script).

system.ti_ms
Returns the system's timestamp generator value, scaled into milliseconds.
Uses the same internal source as system.timestamp. With a timer clock frequency of 40 kHz
(as used in MKT-View II,III,IV), the 32-bit timer rolls over to zero after approximately 2^32/(
40kHz * 60 * 60) = 29.8 hours, causing a 'step' in the value returned by 'ti_ms'. After such an
overflow, or after power-on, the timer starts counting at zero. It is not affected by the battery-
backed-up real time clock.
In the display interpreter, ti_ms is an equivalent function.

system.unix_time
If the system is equipped with a battery-buffered real time clock (RTC), this function returns
the system's current date and time in 'Unix Time' format.
The 'Unix Time' aka 'Unix Second' is defined as
 the number of seconds since midnight January 1st, 1970 (1970-01-01
00:00:00) .
Beware of the "Unix Millenium Bug" (Year 2038 Bug) which will affect any system which
(as many of today's Unix / Linux systems) use a signed 32-bit integer to store the Unix Time !
Since November 2018 system.unix_time doesn't return an int anymore, but a double with
fractional part and a resolution in the range of a few microseconds.
For details, see the TimeTest.cvt example .
The 'system' (terminal) doesn't care about timezones, so we suggest you let the built-in real-
time clock run in UTC (universal time). Only in that case, system.unix_time (and
system.unix_time_boot, see below) can really return date and time in UTC, as it should.
See also: time.unix_to_str, Date and time conversions, Modified Julian Date (MJD),
 timestamps in array headers, timestamps for Y(t)-diagrams.

system.unix_time_boot
Returns the system's date and time in 'Unix Time' format, at the time the system
(programmable display) was booted, and when the timestamp generator (system.timestamp)
was zero.

system.vsup
Returns the device's current supply voltage, measured in Volts.
The voltage is tapped "after the reverse-protection diode" and thus isn't very accurate. The
function can be used for diagnostic purposes, for example if the device is powered from a
vehicle's onboard DC mains.

© MKT / Dok.-Nr. 85122 Version 2.2 135 / 220

../help/diagr_01.htm#display_dia_unix_time
../help/progt_01.htm#ifunc_ti_ms
../help/diagr_01.htm#scaled_x
../help/daq_01.htm#daq_read_channel

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

In contrast to the older display interpreter function 'sys.vsup', the script function 'system.vsup'
returns a floating point number (V).

system.vcap
Similar as system.vsup, but this function returns the voltage at the device's integrated UPS
(Uninterruptable Power Supply) when equipped with such.
The unit is Volts. The maximum (for MKT-View II, III, IV) is slightly below 5 Volts when
the Ultracaps are fully charged.
In devices without an integrated UPS, this function returns zero.

getkey
Reads the next key from the UPT's keyboard buffer. The same buffer is also used by the
display interpreter's kc function (!), so reading a key through getkey also removes it for the
'kc'-function, and vice versa !
If the keyboard buffer was not empty, getkey will return a non-zero value. Usually, this value
is one of the key -constants which you can use in a select-case list to implement "handlers" for
the individual keys. Note that not all keyboards support all possible keys ... some of MKT's
keyboards only have function keys (keyF1 to keyF3), others have only cursor keys (keyUp,
keyLeft, keyRight and keyDown) and / or keyEnter and keyEscape (Enter alias "Return",
sometimes this key is generated by pressing the rotary button).
For numeric keyboards, use key0 to key9 .
Don't make any assumption about the actual key values, they may be hardware-specific !
Only use the key -constants ! The only value returned by getkey which will definitely never
change in future is 0 (zero), which means "no key has been pressed since the last call" .
An example for the getkey function, used in a select-case list, can be found in the test
application TScreenTest.cvt , and in the 'QuadBlocks' demo (to control the game via
keyboard).
For more advanced control (for example, to detect when a key has been pressed and released),
use the low-level event handlers OnKeyDown and OnKeyUp instead.

See also : display (functions), keywords, contents .

 11 4.10.9 Date and Time conversions
The following built-in functions and procedures can be used for basic date- and time conversions
aka "calendar" functions :

time.unix_to_str(string format, int unix_date_and_time)
This function converts a date (precisely, date and time in Unix seconds) into a string. The
format is specified by means of a format string (first argument), like:
 "YYYY-MM-DD hh:mm:ss" : produces an ISO 8601-compliant representation with date
and time.
 (without a 'T' between date and time because the 'T' is ugly ... see next example)
 "YYYY-MM-DDThh:mm:ss" : would be fully ISO 8601-compliant, but looks ugly

© MKT / Dok.-Nr. 85122 Version 2.2 136 / 220

http://en.wikipedia.org/wiki/ISO_8601
../help/progt_01.htm#ifunc_sys_vsup

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 "DD.MM.YYYY" : produces an 'unlogic' date format which is unfortunately common in
Germany.
 "MM-DD-YYYY" : another 'unlogic' but unfortunately common date format.
 "MMM-DD-YYYY" : similar but less ambiguous: Three letters (not digits) for the month.
 (MMM, all in upper case, expands to JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC)
 "Mmm DD, YYYY" : similar as the traditional american date format, but only three letters
for the month.
 (Mmm, mixed upper/lower case, expands to Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, Dec)

We suggest to use ISO-compatible date- and time formats only; especially if you are a
German company with customers on the other side of the pond.
What do you, and what would your customer make of 3/12/2001 ? The 12th day of March, or
the 3rd day of December ?

Example:
 print("It is now ", time.unix_to_str("YYYY-MM-DD
hh:mm:ss",system.unix_time));

time.date_to_mjd(in int year, in int month, in int day)
This function converts (combines) a date consisting of year (1858..2113), month (1..12), and
day-of-month (1..31) into the Modified Julian Date (MJD, defined futher below). The
function result ("return value") is the MJD.

time.mjd_to_date(in int mjd, out int year, out int month, out int
day)

This procedure converts (splits) a Modified Julian Date number (MJD) into a normal
Gregorian date, consisting of year (1858..2113), month (1..12), and day-of-month (1..31) .
All outputs are specified as 'outputs' in the argument list, there is no 'function result' aka
'return value'.

The Modified Julian Date (MJD) is commonly defined as

 the number of days since midnight November 17, anno 1858 (1858-11-17
00:00:00 in ISO 8601 format) .

It is widely used to calculate differences between dates, becauses the difference between two MJDs
is the number of days (!) between their calendar dates.
The MJD can easily be converted into a 'Unix' time, because the UNIX BIRTHDATE (1970-01-01)
as MJD (day) is 40587 . In contrast to MJD, the 'Unix time' counts the number of seconds since that
birthdate, so the conversion from MJD to 'Unix seconds' is straightforward ... see example
programs/script_demos/TimeTest.cvt .

See also (related to measuring time via script):
 Programmable timers, timer events, CAN.timestamp_offset, StartStopwatch(),
ReadStopwatch_ms(), GPS .

© MKT / Dok.-Nr. 85122 Version 2.2 137 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 12 4.10.10 Commands for the GPS receiver

The script language has similar commands to control the external GPS receiver as the display
interpreter. Both are explained in detail in this extra document (gpsdec_01.htm). In any case, the
module prefix 'gps.' is used for commands to control the receiver, and to retrieve position data.

Note
The script language has an extra data type 'double' for 64-bit double precision floating point
numbers.
The standard 'float' with 32-bit single precision doesn't have enough resolution for storing the
latitude and longitude in degrees from a decent GPS receiver (and especially not for DGPS
receivers). The same applies to the combined gps-date and -time in Unix format (seconds
since 1970-01-01 00:00:00.0 UTC). Thus, for calculations or storage of gps.lat_d, gps.lon_d,
and gps.unix_time, use double, not float.

Whenever the GPS receiver reports a new position, the OnLocationChanged handler will be called
(if implemented in the script). Depending on the receiver type, this happens once or four times per
second.

 13 4.10.11 Commands to control the Trace History
The following procedures and functions can be used to control the Trace History from the script.
Their main intention is for debugging, development, and to track CAN bus problems.

trace.print(<Parameter>)
Prints the specified parameters (strings and numeric values) as a single line of text into the
device's Trace History.
This is possible in the simulator (programming tool) as well as on a 'real' target, but the target
must have a 32-bit-CPU (ARM), and the firmware must be from July 2012 or later.
Example (prints the current date and time into the Trace History):
 trace.print("Date,Time: ", time.unix_to_str("YYYY-MM-DD
hh:mm:ss", system.unix_time));

trace.enable
With this formal variable ("flags"), the script can stop or resume the trace history, for example
to prevent CAN messages being appended after the script (application) found out that
'something went wrong' already, and all further CAN traffic is not relevant to track down the
cause.
The trace-enable-flags (trace.enable) is actually a bitwise-OR combination of the following
constants:

• traceCAN1 : add CAN messages, 1st bus, to the trace history
• traceCAN2 : add CAN messages, 2nd bus, to the trace history
• traceCAN_UDP: add CAN-via-UDP messages to the trace history
• traceFlexRay: add Flexray-via-UDP messages to the trace history
• traceUDP : add generic UDP/IP frames to the trace history
• traceTCP : add generic TCP/IP frames to the trace history

With trace.enable := 0 (zero), none of the above events will be added to the trace history (i.e.
trace stopped, only trace.print will be able to append more items to the trace).

© MKT / Dok.-Nr. 85122 Version 2.2 138 / 220

../help/gpsdec_01.htm#gps_unix_time
../help/gpsdec_01.htm#gps_lon_d
../help/gpsdec_01.htm#gps_lat_d
../help/gpsdec_01.htm

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Example (script code):

 trace.enable := traceCAN1 + traceCAN2; // trace messages
from CAN1 and CAN2
 if(can_rx_fifo_usage > 500) then
 trace.print("CAN FIFO usage: ", can_rx_fifo_usage);
 trace.enable := 0; // don't add more CAN messages to the
trace history
 endif;

By default (after power-on) the trace history is enabled for CAN1 and CAN2, which means
all CAN messages registered for reception, and all CAN messages transmitted by the device
are appended to the history.
Setting trace.enable=0 does not affect the trace.print command; the script can always 'print'
into the Trace History via command.

trace.stop_when_full
If this flag is set (by the script), the trace history will be automatically stopped as soon as the
trace buffer is (almost) full.
This feature can be used to catch the initial part of a CAN conversation. An example is in the
application 'TraceTest.cvt':

// Select the items which shall be displayed in the trace history:
trace.enable := traceCAN1 + traceCAN2; // trace messages from CAN1 and CAN2

// Let the TRACE HISTORY stop when the trace-buffer is full
// (instead of overwriting the oldest entries) :
trace.stop_when_full := TRUE;

Note: With the option 'trace.stop_when_full := TRUE', the trace-history will be stopped
internally by setting trace.enable := 0 (in the firmware).
To resume acquisition, set trace.enable as shown in the example above.
By default (after power-on), trace.stop_when_full is FALSE.

trace.num_entries
Returns the current number of entries in the trace history.
As long as the trace history is enabled, this value may increase up to (almost!)
trace.max_entries.

trace.max_entries
Returns the maximum number of entries in the trace history.
This value is constant (for a certain device), but it may depend on the device firmware due to
memory constraints.
The example in 'TraceTest.cvt' (details below) uses this value as argument for a modulo-
operation, to limit the circular buffer indices:
iTailIndex := (iTailIndex+1) % trace.max_entries;

trace.oldest_index

© MKT / Dok.-Nr. 85122 Version 2.2 139 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Returns the trace buffer index where the OLDEST entry has been stored.
Due to the 'circular' nature of the buffer, the oldest entry isn't necessarily at index zero !

trace.head_index
Returns the trace buffer index where the NEXT (newest) entry will (future!) be stored.
It also marks the endstop when listing the trace buffer in the script itself.
Example (from the application 'TraceTest.cvt'):

iTailIndex := trace.oldest_index; // start listing trace-entries HERE
while(iTailIndex != trace.head_index)
 print(trace.entry[iTailIndex], "\r\n"); // dump next entry to screen
 iTailIndex := (iTailIndex+1) % trace.max_entries; // increment "tail"
index
 // (iTailIndex wraps from 'max_entries minus one' to zero,
 // because the trace buffer is organized like a CIRULAR ARRAY)
endwhile;

Note: If trace.head_index is equal to trace.oldest_index, the trace history is empty.

trace.entry[n]
Retrieves the n-th entry in the trace history buffer as a string.
The oldest entry is at index n=trace.oldest_index .
A 'headline', compatible with the display format, can be retrieved by trace.entry[-1].
A 'separator line', consisting of a string of dashes, can be retrieved by trace.entry[-2].

print(trace.entry[-1], "\r\n"); // print a 'headline' for the trace
display
print(trace.entry[-2], "\r\n"); // print a 'separator' for the trace
display

For a complete example, see trace.head_index, where this function is used to dump the trace-
history to a text panel.

trace.can_blacklist[i]
Retrieves the n-th entry in the blacklist of CAN-IDs, which can exclude up to 10 individual
CAN message identifiers from the trace history (display).
At the time of this writing (2013-11-27), the index (i) may be 0 to 9, because the blacklist is
limited to a maximum of ten entries.
An example which exclude certain CAN message identifiers from the trace history via script
is in the test/demo application TraceTest.CVT.

trace.file_index
Gets or sets the file-sequence-number for saving the trace history as a text file.
To save the trace history as text file, you can use the command trace.save_as_file mentioned
below.

trace.save_as_file

© MKT / Dok.-Nr. 85122 Version 2.2 140 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

This command saves the contents of the trace history buffer as a text file on the memory card.
The same can be achived 'manually' (by the operator) as explained here.
With each new file saved, the file-sequence-number (exposed as trace.file_index) is
incremented by one.
Only certain devices support this feature !

trace.clear
Clears (erases) the trace history buffer.

 14 4.10.12 Functions to control the virtual keyboard via script

Since 03/2020 (*), the script language contains a few functions (methods) to control the virtual
keyboard:

vkey.show(N) : opens the virtual keyboard, i.e. makes it visible.
Parameter 'N' defines the appearance:
0 = don't "show" but hide the virtual keyboard
1 = show the small virtual keyboard (with cursor keys for "navigation"; see screenshots
above)
2 = show the medium-sized numeric virtual keyboard
3 = show the large alphanumeric virtual keyboard
4 = show the large virtual keyboard with the "special character" page (function keys, German
Umlauts, etc)
The following bit-flag may be combined with the above values for parameter 'N' (bitwise
ORed):
8 = maximize window (occupying the entire screen, only makes sense for 'large' keyboard
layouts with an internal edit field).

vkey.move(X,Y) : moves the virtual keyboard window.
Parameters X,Y define the graphic coordinate (upper left corner).

vkey.enable : enables opening the virtual keyboard via double-click.
This is the default state.

vkey.disable : disables opening the virtual keyboard via double-click.
Typically used in applications (scripts) that process the encoder double-click themselves.

vkey.connect(var,caption,options[,row,col]) : Connects the virtual keyboard to
a script variable.

Parameter:
 var : variable to connect with the keyboard's edit field; type must be string or tTable
 caption : text (string) to be displayed in the virtual keyboard's title row
 options : reserved for future applications, 0="no special options"
 row,col : row and column, if var is an object of type tTable

© MKT / Dok.-Nr. 85122 Version 2.2 141 / 220

../help/touchscreen_01.htm#virtual_keyboard
../help/touchscreen_01.htm#virtual_keyboard

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Note: vkey.connect() also makes the virtual keyboard visible. Except for script-controlled
switching of the keyboard layout, it's unnecessary to call vkey.show(N) besides
vkey.connect().

vkey.text : Current text in the virtual keyboard's edit field.
Can be used in the application to check input while editing, i.e. before pressing ENTER to
finish input.
This pseudo-variable always has data type string, regardless of what is currently 'connected' to
the virtual keyboard's edit field. It is typically used in the OnVirtualKeyboardEvent handler.

vkey.editing : Flag 'virtual keyboard currently used for editing under script control.
This flag is internally set by vkey.connect (or vkey.show), until the user finishes input,
usually by pressing the virtual ENTER key.
This pseudo-variable has the data type bool, i.e. TRUE (1) or FALSE (0).
It is typically used in the OnVirtualKeyboardEvent handler.

OnVirtualKeyboardEvent(event, param1, param2) : Optional Event-Handler for the virtual
keyboard.

Please note the general hints about event handlers ('must return immediately').

(*) These functions require a firmware and programming tool compiled 2020-03-16 or later .
In devices with older firmware, similar functions are only available in the display interpreter.

 15 4.10.13 Interaction between Script and Internet Protocol Stack

Most devices with an Ethernet port also have an integrated Internet protocol stack (with TCP/IP).
The functions and event handlers presented in this chapter can be used for a 'direct' interaction
between the script (application) and the IP stack.
For the normal use (TCP/IP used for the embedded web server) it's not necessary to have special
commands in the script for controlling the TCP/IP stack. For example, files uploaded into the
RAMDISK via web server (HTTP-POST) can be processed by the script using the standard file I/O-
functions; and files which were written into the RAMDISK by the user's script can be read via web
server (HTTP-GET) from the device.

Because Internet Socket programming is anything but trivial, and -especially during development-
things can 'go wrong' due to myriads of possible reasons (network-related trouble, trouble with
firewalls, routers, cables, protocols, ...), several network-related debugging tools are integrated in
the development system and / or in the device firmware(!). Those methods are listed in chapter
'Internet / Ethernet-related testing'.

 15.1 4.10.13.1 Overview of Internet Application Interface (socket-like API)

In addition to the web server (which doesn't depend on the script language at all), a script
application can implement its own 'IP based' functionality. For this purpose, the script language
contains a small subset of the Berkeley Socket API. The following list is just an overwiev of the
most important socket-based functions. For details about Berkeley Sockets, consult other literature,
or study the examples further below.

© MKT / Dok.-Nr. 85122 Version 2.2 142 / 220

http://en.wikipedia.org/wiki/Berkeley_sockets
http://www.mkt-sys.de/http_server_info/srv_info_01.htm
../help/progt_01.htm#icmd_overview

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

The internet application interface is 'socket based', in resemblance to
sockets used in historic telephone exchanges like the one shown above.
But in 1890, operators didn't need to 'create' sockets before using them.

iSock := inet.socket(int address_family,int type,int protocol);
Creates a new socket of a certain socket type, identified by an integer number, and allocates
system resources to it.
The returned value (socket) is an integer value which identifies the communication endpoint.
It must be stored in an integer variable until the socket is closed (i.e. "unplugged") again.
Most functions listed below expect the socket number as their first input argument.

inet.close(int socket)
Causes the system to release resources allocated to a socket. In case of TCP, the connection is
terminated.
Unlike the other socket API functions, inet.close does not return a value.
If certain network operations are still outstanding, a closed socket may not be available
immediately for other tasks, i.e. given back to the pool of 'free' sockets. For example, a socket
which was successfully CONNECTED to a remote peer will first enter the CLOSING state,
before being 'really' CLOSED.

result := inet.bind(int socket, int port_number)
Used on the server side (on the client side, use inet.connect instead).
Associates a socket with the specified local port number. In contrast to the Berkeley socket
API, inet.bind() doesn't care for IP addresses because the server's IP address is always the
same as the device's IP address.

result := inet.listen(int socket, int nConnections)
Used on the server side. Causes a bound TCP socket to enter listening state.

iAcceptedSocket := inet.accept(int iListeningSocket)
Used on the server side. Accepts an 'incoming call' from a remote client, and creates a new
socket associated with the socket address pair of this connection.
The returned value is a new socket, which should later be closed/freed (inet.close) to prevent
running out of system resources.

his_name := inet.getpeername(int iAcceptedSocket)
Typically used on the server side, after successfully accepting a connection.
This function shall retrieve the peer name ("IP address) of the specified socket as a string.
Notes: The Berkeley API uses a fancy structure to store the result for this function; but here
the result is a simple string.
In this context, a peer is 'the guy at the other end of the line', i.e. the remote client.

© MKT / Dok.-Nr. 85122 Version 2.2 143 / 220

http://en.wikipedia.org/wiki/Berkeley_sockets

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

iSockState := inet.getsockstate(int socket)
Retrieves the current state of the specified socket.
The result may be one of the following symbolic script constants 'SCKS_...' - see socket
states.

result := inet.connect(int socket, int timeout_ms, string destination)
Used on the client side, and assigns a free local port number to a socket. In case of a TCP
socket, it causes an attempt to establish a new TCP connection.
This function usually requires several hundred milliseconds, depending on the network and
the protocol, because often the TCP/IP protocol stack must resolve the remote server's IP
address, or name (using ARP and/or DNS). The second parameter (timeout_ms) specifies the
maximum number of milliseconds after which inet.connect must return (with or without
success).
The return value indicates success (0=SOCK_SUCCESS), or a negative error code defined
here.

result := inet.send(int socket, int timeout_ms, input_arguments)
Sends data to a remote socket. If the network transmit buffer is full, the command may block
the caller up to <timeout_ms> milliseconds. If the connection bandwidth it large enough,
inet.send will not block at all because the actual transmission of data takes place in the
background (in a different task).

result := inet.recv(int socket, int timeout_ms, output_arguments)
Receives data from a remote socket. Returns the number of bytes received (if any); or a
negative error code (one of the SOCK_ERROR constants). If the network receive buffer is
empty, the command may block the caller for up to <timeout_ms> milliseconds to wait for the
reception of data. The output arguments must be passed by reference, using the address-
taking operator.

Examples for the socket style API can be found in the following subchapters, and in the application
script_demos/InetDemo.cvt, which contains a small, socket-based TCP client and server, written
entirely in the script language.
Details on some of the 'inet' functions follow in the next chapters.

Because some of the original Berkeley Socket API functions are too complex for a 'simple' scripting
language, a few functions were added which are not socket-related:

inet.my_addr[0..3] : Reads the local, numeric ("four-byte") IP address.
If the device doesn't have an IP address yet (because it's configured for DHCP and hasn't
received an IP yet), all four bytes are zero. Without DHCP (aka 'fixed IP address' in the
device's network setup), inet.my_addr[] may report a non-zero IP address even if there is no
Ethernet cable plugged in ! Some of the demo applications use this feature to show the
device's own numeric IP address on the display, which is especially helpful if the device has
leased an IP address via DHCP but for some reason the remote client cannot access the device
via its hostname (due to DNS trouble, which sometimes happens).
Example (copied from programs/script_demos/InetDemo.cvt) :

//--
proc UpdateLocalAddress

© MKT / Dok.-Nr. 85122 Version 2.2 144 / 220

../help/progt_01.htm#sysmenu_network_setup
http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Address_Resolution_Protocol

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 // Updates the 'local address' (string) for the display.
 // If DHCP is in use, our local (IP-)address may not be valid yet when
 // the script starts to run. Note: 'LocalAddress' is a display variable !
 display.LocalAddress := string(inet.my_addr[0])
+"."+string(inet.my_addr[1])
 + "." + string(inet.my_addr[2])
+"."+string(inet.my_addr[3]) ;
endproc; // UpdateLocalAddress

inet.gethostname : Returns the device's own hostname as a string of characters.
The hostname can be configured in the device's network setup, and -in contrast to the
numeric IP address- it will never change by means of an Internet protocol.

 15.2 4.10.13.2 Internet socket state diagram

The following diagram shows the basic states of a socket, and their transistions.
Not shown here for clarity: Transitions into the (unrecoverable) error state.

The current state of a socket can be retrieved with via inet.getsockstate(<socket>).
The result (an integer value) is one of the following symbolic constants in the script language:

SCKS_NOT_IN_USE
this socket is currently not in use.

SCKS_CREATED

© MKT / Dok.-Nr. 85122 Version 2.2 145 / 220

../help/progt_01.htm#sysmenu_network_setup
http://www.mkt-sys.de/MKT-CD/upt/help/scripting_01.htm#string

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

socket has been created but neither listening (server side) nor connecting (client side) yet

SCKS_LISTENING
server side: called 'inet.listen' but not 'inet.accept' yet

SCKS_ACCEPTED
server side: called 'inet.accept', with success (!). Note that accept() allocates a new socket
from a pool,
thus the 'accepted' socket is not the same as the 'listening' socket, and there is no transition
from LISTENING to ACCEPTED for the listening socket !

SCKS_CONNECTING
client side: trying to connect to a remote server

SCKS_CONNECTED
client side: successfully connected to a remote server

SCKS_CLOSING
either side: closing the socket, but some network operations may be still pending

SCKS_CLOSED
either side: the connection is definitely closed by someone

SCKS_ERROR
either side: an (unexpected) error occurred, connection broke down, etc.
The application should close the socket, and if necessary try to reconnect.

 15.3 4.10.13.3 Error codes for the Internet Socket Services

The following internet-socket related err codes are available as symbolic constants in the script
language.
Their values are not compatible with error codes specified in the Berkeley socket services, so don't
make any assumption about the actual values (except that SOCK_SUCCESS is ZERO, and all other
error codes have negative values), and use only these symbolic constants in your code:

SOCK_SUCCESS
Success, or operation completed. Since this 'error code' is not an error at all, its value is zero.

SOCK_ERROR
General Error

SOCK_EINVALID
Invalid socket descriptor

SOCK_EINVALIDPARA
Invalid parameter

© MKT / Dok.-Nr. 85122 Version 2.2 146 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

SOCK_EWOULDBLOCK
Caller would have been blocked (if it was a 'blocking' socket, i.e. completion is pending)

SOCK_EMEMNOTAVAIL
Not enough memory in memory pool, or too many handles or 'sockets' in use

SOCK_ECLOSED
Connection is closed or aborted

SOCK_ELOCKED
Socket is locked in RTX environment

SOCK_ETIMEOUT
Timeout (on a socket, during address resolution, name lookup, connection set-up, or
whatever)

SOCK_EINPROGRESS
Host Name resolving in progress

SOCK_ENONAME
Host Name not existing

SOCK_ECONNREFUSED
No connection could be made because the target machine actively refused it

SOCK_EUNREACH
Destination unreachable. Example: An ARP request to query the MAC-address for a certain
IP has been sent, but no response was received. Possible reason: No device with the
destination-IP-address exists in the network.

SOCK_ENOTSUPPORTED
a particular function, or a combination of options, is not supported (/ yet ?)

SOCK_ETHREADING
Problem with multithreading. Please report to the developer.

SOCK_ENCONNRESET
equivalent to Winsock's "WSAECONNRESET" ("Connection reset by peer")
Beware, this message may be misleading; it also means 'destination port not open' for UDP !
See comments in the sourcecode of the 'internet' demo script / UDP test.

SOCK_ENOBUFFERS
equivalent to Winsock's "WSAENOBUFS" ("No buffer space available")

SOCK_EISCONNECTED
equivalent to Winsock's "WSAEISCONN" ("Socket is already connected")

© MKT / Dok.-Nr. 85122 Version 2.2 147 / 220

../help/progt_01.htm#author
http://en.wikipedia.org/wiki/Address_Resolution_Protocol

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

SOCK_ENOTCONNECTED
equivalent to Winsock's "WSAENOTCONN" ("Socket is not connected")

Note: A function to convert these error codes into human-readable text is contained in the 'Internet
Demo' application (script_demos/InetDemo.cvt) .

The following chapters contain details about some of the internet related functions in the script
language.

 15.4 4.10.13.4 inet.socket(int address_family, int socket_type, int protocol)
This function creates a new socket of a certain socket type, identified by an integer number, and
allocates system resources to it.

The returned value, traditionally called a 'socket' in resemblance to a telephone socket, is an integer
value which identifies the communication endpoint. It must be stored in an integer variable until the
socket is closed (i.e. "unplugged") again. Negative return values indicate an error (see error codes
listed here).

Parameters:

address_family : One of the AF_ constants, similar to the Berkeley socket API.
AF_INET = Internet Protocol (V4). This is currently the only supported address family.

socket_type : One of the SOCK_ constants, similar to the Berkeley socket API.
SOCK_STREAM = Stream socket (Connection oriented, for example TCP)
SOCK_DGRAM = Datagram Socket (Connectionless, for example UDP)

protocol : One of the IPPROTO_ constants, similar to the Berkeley socket API.
IPPROTO_TCP = TCP/IP (used together with socket_type SOCK_STREAM)
IPPROTO_UDP = UDP/IP (used together with socket_type SOCK_DGRAM)

Note: Any other combination of 'address family', 'socket type', and 'protocol' beside those listed
above is expected NOT to work properly !

Example for TCP (code snippet from the 'internet demo') :
 iListeningSocket := inet.socket(AF_INET, SOCK_STREAM,
IPPROTO_TCP);
 if (iListeningSocket < 0) then // negative result means
ERROR !
 print("Could not create a socket !");
 endif;

Example for UDP (also from the 'internet demo') :
 iUDPSocket := inet.socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

© MKT / Dok.-Nr. 85122 Version 2.2 148 / 220

http://en.wikipedia.org/wiki/Berkeley_sockets

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 if (iUDPSocket < 0) then // negative result means ERROR !
 print("Could not create a socket !");
 endif;

 15.5 4.10.13.5 inet.bind(int socket, int port_number)

Used on the TCP- or UDP- server side (on the TCP client side, use inet.connect instead).
As in the Berkeley socket API, 'bind' associates a socket with the specified local port number. But
in contrast to the Berkeley socket API, inet.bind() doesn't care for IP addresses because the server's
IP address is always the same as the device's IP address (in which the script runs).

For UDP sockets, inet.bind must be called before inet.recv due to restrictions in the Windows
Sockets API (which is used in the simulator): recv / recvfrom only works on a 'bound' socket
(which means, in geek speak, a socket tied to a certain local port number.

See also: Analogy between ("Berkeley"-) sockets and a conventional telephone in the description of
inet.accept .

 15.6 4.10.13.6 inet.listen(int socket, int nConnections)

Used on the server side. Causes a bound TCP socket to enter listening state.
For details, see the explanation of the Internet Socket State Diagram shown in an earlier chapter.
An example using inet.socket / bind / listen is in the 'Server' part of the Internet demo application.

 15.7 4.10.13.7 inet.accept(int iListeningSocket)

Used on the server side. In analogy to a telephone, "picks up the phone off the hook" when the
phone rings (incoming call).
Prior to receiving a call, the phone must be plugged into the socket (inet.socket), the phone
company must have assigned a number (here: inet.bind, with a certain port number), and the phone
must have been prepared to listen for incoming calls on the line (inet.listen).
When successfull, accept() allocates a new socket from a pool, thus the 'accepted' socket is not the
same as the 'listening' socket, and there is no transition from LISTENING to ACCEPTED for the
listening socket (this is where the 'phone analogy' ends..) !
If there was no incoming call (since the previous call of accept(), which is not an error),
inet.accept() returns SOCK_EWOULDBLOCK (which is a negative number to distinguish it from a
new, 'accepted', socket).
If anything in the sequence (socket → bind → listen → accept) went wrong, you may get another
error code (as the return value), sometimes accompanied with a (more or less) descriptive error text
in the error history (especially when trying this on a PC, in the simulator, shown in the 'Errors and
Messages' tab) :

For details, see the explanation of the Internet Socket State Diagram shown in an earlier chapter.
An example using inet.socket / bind / listen is in the 'Server' part of the Internet demo application.

 15.8 4.10.13.8 inet.connect(int socket, int timeout_ms, string destination)

Used on the client side. Assigns a free local port number to a socket. In case of a TCP socket, it
causes an attempt to establish a new TCP connection.

© MKT / Dok.-Nr. 85122 Version 2.2 149 / 220

../help/socket_error_codes
../help/inet_recv
http://en.wikipedia.org/wiki/Berkeley_sockets

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

When used with a UDP socket, this function does not generate any network traffic (because UDP is
a connection-less protocol), but only sets the remote address (the peer's IP-address), and -
optionally- a fixed port number.
If you prefer (like the author) to not use a 'connect' function on a connection-less protocol, use
inet.SetRemoteAddress for UDP instead because that name better hits the spot.

Unlike Winsock / Berkeley Socket API (which uses hundreds of obfuscated structures to store all
kinds of 'addresses'), the 'destination' address is just a simple string, for example
"192.168.0.24:49155" (without the double quotes, of course).

This function usually requires several hundred milliseconds, depending on the network and the
protocol, because often the TCP/IP protocol stack must resolve the remote server's IP address, or
name (using ARP and/or DNS). Thus the second parameter (timeout_ms) specifies the maximum
number of milliseconds after which inet.connect must return (with or without success).
The return value indicates success (0=SOCK_SUCCESS), or a negative error code defined here.

 15.9 4.10.13.9 inet.SetRemoteAddress(int socket, string destination)

Used for UDP (which is a connection-less protocol so using "connect" for UDP sockets didn't seem
appropriate).
This function sets the 'remote' address and port number for any subsequent call of inet.send, but -
again- only for UDP, not for TCP (for which 'connect' is used instead).
Similar as for inet.connect (which should only be used for TCP but not UDP), the 'destination'
address is just a simple string, for example "192.168.0.24:49155" .

 15.10 4.10.13.10 inet.send(int socket, int timeout_ms, input_arguments)

Used both on the client- and server- side, and for UDP and TCP sockets.
Sends data to a remote socket ('peer').
If the network transmit buffer is full, the command may block the caller up to <timeout_ms>
milliseconds. Regardless of being successful or not, inet.send() will always return after that interval
(or earlier). If the connection bandwidth it large enough, inet.send will not block at all because the
actual transmission of data takes place in the background (in a different task).
The return value indicates success (0=SOCK_SUCCESS), or a negative error code defined here.

In the most simple case, the transmitted data (parameter 'input_arguments') is a simple string.
In more demanding applications (for example if the transmitted fragment or datagram contains
'something binary'), 'input_arguments' may actually be a comma-separated list of variables, which
will be assembled one-by-one in the internal transmit buffer.

 15.11 4.10.13.11 inet.recv(int socket, int timeout_ms, output_arguments)

Usable on both the client- and server- side.
Receives data from a remote socket.
Return value: The number of bytes received (if any); or a negative error code (one of the
SOCK_ERROR constants).
If the network receive buffer is empty, the command may block the caller for up to <timeout_ms>
milliseconds to wait for the reception of data.

© MKT / Dok.-Nr. 85122 Version 2.2 150 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

The output arguments must be passed by reference (not, as usual, passed by value). To achieve this,
use the address-taking operator (&) as prefix before the names of the destination variable(s).
Example (from 'InetDemo.cvt') :

 proc RunTcpClient // minimalistic 'TCP client' .
 local int iResult;
 local string s;
 (...)

 iResult := inet.recv(iClientSocket, 20/*ms*/, &s);
 if(iResult > 0) then // received something -> process it
 print(s);
 endif;
 endproc;

Regardless of being successful or not, inet.recv() will always return after that interval (or earlier).

In most higher internet protocol layers (HTTP, FTP, ..), lines of text are exchanged between client
and server. Thus the output arguments will almost exclusively be text strings. Each line of text must
end with <CR><LF> (Carriage Return followed by 'Linefeed' aka New Line, hexadecimal 0x0D
0x0A).
Thus, the default 'separator' when receiving strings from a socket using inet.recv is this end-of-line
marker. Unfortunately, some applications stubbornly ignore this. To simplify the treatment of
different END-OF-LINE markers, inet.recv() uses the following end-of-string markers:

• A zero-byte is always an end-of-string marker, as in the "C" programming language.

• <CR> (carriage return) immediately followed <LF> also marks the end of a string (on
reception), and both of these characters are appended to the end of the string.

• <CR> not followed by <LF> also marks the end of a string (on reception), and is appended
(as a single character) to the end of the string.

• <LF> ('linefeed', 0x0A) without a preceding <CR> is treated like a normal ASCII character,
and does not mark the end of a string;
unless you explicitly define this character as separator after creating the socket.

 15.12 4.10.13.12 JSON (Javascript Object Notation)

Even though the script language is in no way compatible with Javascript, it will support JSON
(planned for 2015).
This will, for example, allow a seamless implementation of an interface to openABK ('offenes
Anzeige- und Bedien-Konzept'), initiated by BMW.
Abandoned plan : With sufficient demand from other users, there will be commands in the script
language to communicate via openABK 'directly'.

 15.13 4.10.13.13 Internet / Ethernet-related troubleshooting

Internet Socket programming is anything but trivial, and -especially during development- things can
'go wrong' due to various reasons (network-related problems, trouble with firewalls, routers, cables,

© MKT / Dok.-Nr. 85122 Version 2.2 151 / 220

http://openabk.org/

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

protocols, ...).
To help developing network-based applications, several test methods are integrated in the
development system and / or in the device firmware(!). Those methods are:

• The status and calling sequence of Internet-related script commands can be examined in the
Trace History
(click on the wrench button on the script tab, select 'Options for the trace history', and set the
checkmark before trace 'inet' function calls)

• Examine received and sent Ethernet frames with the Wireshark-compatible Packet Capture
option
(on devices like MKT-View IV, the Ethernet traffic can also be 'listed' without Wireshark,
locally on the devices LCD screen)

• If 'something goes wrong' (when calling any of the internet-related functions), for example
because the network protocol stack refuses to do what the scripts wants it to, an error
message (or warning) will be appended to the list of Errors and Messages. Example (with a
desciption of the possible error reason on a PC with Windows 7):
inet.bind(port=49152) failed : "Only one usage of each socket
address (...) is normally permitted"
We will get back to this particular error, and why it often occurrs in the simulator, further
below.

• You should write your script according to the motto 'hope for the best but expect the worst'
(defensive programming).
Most internet-related script functions return a non-negative return value when successful,
and a negative error code when 'something went wrong'.
The symbolic error codes are listed in another chapter of this document. If nothing else
helps, you could inform the operator of the device, with a human-readable error message.
The 'Internet Demo' application contains a user-defined function (InetErrorCodeToString) to
convert any of the 'Socket'-related error codes into plain text.

When running the script in the simulator (on a PC), you will often face the problem that the bind-
function refuses to 'bind' a successfully created socket to a certain port number (for purpose of
"listening" for incoming calls on that port, which is necessary for many 'server'-like applications).
The reason is usually that the specified port is already in use by another program (or "service")
running on the same PC. The simulator tries to gather more information about the reason why a
Socket API function call failed, and show the result on the programming tool's 'Errors and
Messages' tab. Example:

 Sourcecode (script) :
 // Bind the 'listening' socket to the server's port number:
 iResult := inet.bind(iListeningSocket, display.RemotePort);

 Error message (when running the script in the Simulator) :
 inet.bind(port=49152) failed : "Only one usage of each socket address
(...) is normally permitted"
 |___| |
__|
 | |

© MKT / Dok.-Nr. 85122 Version 2.2 152 / 220

../help/progt_01.htm#error_page
../help/progt_01.htm#error_page
../help/progt_01.htm#error_page
../help/progt_01.htm#wireshark_capture
../help/progt_01.htm#wireshark_capture

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 |__ Is this port already "occupied" ? Error text from
Windows (socket services)

To find out who has occupied a certain port (on the PC), use the 'netstat' command in a console
window ("cmd.exe").
Example (on a windows 7 machine):

C:\>netstat -abnop TCP

Aktive Verbindungen

 Proto Lokale Adresse Remoteadresse Status PID
 TCP 0.0.0.0:80 0.0.0.0:0 ABHÖREN 1296
('simulated' HTTP server)
 [ctptwin1.exe]
 TCP 0.0.0.0:135 0.0.0.0:0 ABHÖREN 400

 [svchost.exe]
 TCP 0.0.0.0:5357 0.0.0.0:0 ABHÖREN 4
 Es konnten keine Besitzerinformationen abgerufen werden.
 TCP 0.0.0.0:49152 0.0.0.0:0 ABHÖREN 772
 [wininit.exe]

 TCP 127.0.0.1:49797 127.0.0.1:49796 HERGESTELLT 620
 [firefox.exe]

In short terms, the above means 'we are out of luck, because (TCP-) port 49152 is already occupied
by "wininit.exe", so we cannot use it for our own purpose' (at least not when trying to run the script
application in the simulator, on the PC. Of course, things will be different when loading the script
into the programmable display, because there won't be anyone occupying port 49152 (as on a
windows PC) !

See also (external link): Wireshark-compatible Packet Capture option to track down network-
related problems.

© MKT / Dok.-Nr. 85122 Version 2.2 153 / 220

http://www.mkt-sys.de/http_server_info/srv_info_01.htm#packet_capture_buffer
https://de.wikipedia.org/wiki/Netstat

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 16 4.10.14 Interaction between Script and the CANopen Protocol Stack

Note: The functions described below are only available since August 2013 in devices with built-in
CANopen protocol stack, and in the 'UPT Programming Tool II' (as simulator) !
Because most devices (like "MKT-View" II / III / IV) are delivered with a firmware supporting
'CANdb' (automotive) rather than CANopen (automation), your script may check the availability of
CANopen at run-time via cop.supported, before calling any of the CANopen functions listed further
below. That way, portable> applications can be written that either use CANopen or 'CANdb',
depending on what is currently available. The Feature Matrix contains a list of firmware article
numbers with CANopen- or 'CANdb' support.

The following commands and functions with the prefix 'cop.' (short for 'CANopen') are
implemented in the script language:

cop.supported
Returns 1 (one, TRUE) if the currently installed firmware supports the CANopen-features
listed further below.
Otherwise cop.supported returns 0 (zero, FALSE). In that case, don't use CANopen but the
'raw' CAN-receive and -transmit functions shown in chapter 4.10.6 .

cop.obd(Index,Subindex[,Data_type])
Accesses an object in the CANopen device's own (local) object dictionary (OD).
Since no network operations are involved, this function returns to the caller immediately.

Because in a CANopen device almost anything can be controlled via the OD, the script can
use this command (as a formal assignment, i.e. write-access) to modify its own behaviour
regarding its CANopen communication. Just a few examples:

• Reconfigure the process data communucation via PDO-Communication-Parameter
(Object indices 0x1400=RPDO1 CommPar, 0x1401=RPDO2, .. , 0x1800=TPDO1,
0x1801=TPDO2, ..)

• Reprogram the contents of the process data telegrams by virtue of the PDO-Mapping -
Parameter
(Object indices 0x1600=RPDO1 Mapping, 0x1601=RPDO2, .. , 0x1A00=TPDO1,
0x1A01=TPDO2, ..)

• Reconfigure the SDO-Clients (used to communicate via cop.sdo)
(Object indices 0x1280=first SDO-Client, 0x1281=second SDO-Client, etc..)

• Reconfigure the SDO-Server (which allow other devices to access the terminal's OD)
(Object indices 0x1200=first SDO-Server, 0x1201=second SDO-Server, etc..)

An example using cop.obd to modify the PDO mapping is in CANopen1.upt .

cop.sdo(Index,Subindex[,Data_type][,Timeout_in_milliseconds]) ,
cop.sdo2(SDO-Channel,Index,Subindex[,Data_type][,Timeout_in_milliseconds])

Accesses an object in a remote CANopen device's object dictionary via SDO ('Service Data
Object').
The simple variant (cop.sdo) always uses the first SDO client, cop.sdo2 can use any of the
SDO clients (as far as supported in the firmware) identified by the zero-based SDO-channel

© MKT / Dok.-Nr. 85122 Version 2.2 154 / 220

../help/progt_01.htm#sdo_channels
../help/pdomapdlg_01.htm#mapping_via_script
../help/pdomapdlg_01.htm#mapping_via_script
../help/featmatr.htm
../help/candb_10.htm

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

number.
Because network operations are involved, these functions will take some time to complete.
During this time, the caller (script) will be blocked for several milliseconds, and the script
will be switched into the 'waiting' state. The waiting time may be interrupted by event
handlers. For this reason, cop.sdo must not be used in event handlers itself.
Use cop.sdo only in the script's main task (main loop) !

Because cop.sdo() can return different data types (e.g. int,float,string,...), it is recommended to
use a variable declared as anytype to store the result (see example under 'anytype'). If an error
occurs during the SDO transfer, the result will have the type 'Error' (i.e. typeof(result) ==
dtError). In that case, the result's value is one of the error codes which CANopen (CiA 301)
calls an 'Abort Code'. An excerpt from a long list of possible error codes can be found in the
description of the function cop.error_code.

The SDO-clients (and thus 'cop.sdo' in your scripts) support read- and write-access.
For read-access, use cop.sdo on the right side of an assignment-operator ("LVALUE"),
for write-access, use it on the left side ("RVALUE") as in the following examples:

 // Object 0x1018, subindex 0x01 = "Vendor ID", part of the "Identity
Object", see CiA 301 :
 my_vendor_id := cop.obd(0x1018, 0x01, dtDWord); // read vendor ID
from this device's own OD
 his_vendor_id := cop.sdo(0x1018, 0x01, dtDWord); // read vendor ID
from a REMOTE device's OD
 cop.error_code := 0; // Clear old 'first' error code ('abort code')
before the next SDO access
 cop.sdo(od_index, subindex) := iWriteValue; // try to write into
remote object via SDO
 if(cop.error_code <> 0) then // if the previous SDO accesses were ok,
cop.error_code is zero
 print("\r\nSDO access error, abort code =
0x",hex(cop.error_code,8)); // show abort code
 endif;
 iReadBackValue := cop.sdo(od_index, subindex, dtInteger); // try to
read remote object via SDO
 if (iWriteValue <> iReadBackValue) then
 print("\r\nSDO error: Read value (",iReadBackValue,") <> written
value (",iWriteValue,") !");
 endif;
 print("\r\n My name is ", cop.obd(0x1008,0, dtString)); // "Michael
Caine" ? No, but..
 print("\r\n His name is ",cop.sdo(0x1008,0, dtString)); // ..the
'Manufacturer Device Name'

A complete example using cop.sdo is in CANopen1.upt .
SDO clients are usually configured in the programming tool as explained here.
The various CANopen SDO Protocols are specified in CANopen CiA 301.

cop.error_code

© MKT / Dok.-Nr. 85122 Version 2.2 155 / 220

../help/progt_01.htm#sdo_channels

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

This variable will be set when an SDO protocol error ('abort code') is indicated (locally or via
CAN from a remote server). The error code is usually displayed as an 8-digit hexadecimal
value (see excerpt from CiA 301 below), or can be translated into a human-readable string
with a select-case list as in the demo CANopen1.upt ("ErrorCodeToString").
If an SDO transfer is completed without an error, the value stored in cop.error_code does not
change. As long as cop.error_code is nonzero, the value will also not change (even if a
subsequent error occurrs).
Together with cop.error_code, the variables cop.error_index (= CANopen OD index of the
object which caused the error) and cop.error_subindex (= subindex of the object which
caused the error) will be updated.
To clear (or acknowledge) the error in the script, set cop.error_code to zero as in the
following example:

 cop.error_code := 0; // Clear old CANopen error code (usually an abort
code; 0 = "no error")

The CANopen-SDO-Abort-Codes are specified in CANopen CiA 301. Here's a small
excerpt :
CANopen Abort Code Description

0x05030000 Toggle bit not alternated

0x05040000 SDO protocol timed out

0x06010000 Unsupported access to an object

0x06010001 Attempted to read a write-only object

0x06010002 Attempted to write a read-only object

0x06020000 Object does not exist in the object dictionary

0x08000000 General error

In addition to the CANopen SDO Abort Codes listed above, the function cop.sdo may return
one one of the following 'Pseudo'-abort codes, if a read access failed or is impossible for any
of the reasons listed below. The type of the value returned by cop.sdo will be dtError in that
case.
Note that these 'Pseudo' abort codes are not part of the CANopen standard, and to tell them
from the CANopen SDO abort code, the Pseudo abort codes have bit 28 set (hex. mask
0x10000000).

Pseudo Abort Code Description

0x10000001 Cannot call cop.sdo() now due to CAN bus trouble (check CAN status !)

0x10000002 Cannot call cop.sdo() now due to NMT state ("bootup" or "stopped")

0x10000003 Cannot call cop.sdo() now because CANopen is not initialized yet

0x10000004 Cannot call cop.sdo() now because the SDO client is currently busy from another transfer

0x10000005 Cannot call cop.sdo() because the SDO client is not available (wrong channel, not implemented ?)

0x10000006 Cannot call cop.sdo() due to data type incompatibility ("can't convert")

0x10000007 Cannot call cop.sdo() because the simulator is not running

© MKT / Dok.-Nr. 85122 Version 2.2 156 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

0x10000008 Cannot call cop.sdo() because the SDO client is occupied by the 'node scanner'

0x10000009 Cannot call cop.sdo() because the CAN port is in 'Gateway' mode

0x10000000 Other 'internal' reason why the script must not call cop.sdo() at the moment

See also: Table with more CANopen-SDO-Abort-Codes in the old display interpreter.

cop.nmt_state
Retrieves the current NMT state of the CANopen node (built inside the programmable
device).
The return value may be one of the following constants:

• cNmtStateBootup (0) :
The CANopen device is initialising itself; it cannot communicate, and the object
dictionary doesn't exist yet.

• cNmtStatePreOperational (127) :
In the NMT state Pre-operational, communication via SDOs is possible. PDOs do not
exist, so PDO communication is not allowed. (...)
The CANopen device may be switched into the NMT state Operational directly by
sending the NMT service start remote node or by means of local control.

• cNmtStateOperational (5) :
All "communication objects" (CANopen-slang) are active. Transitioning to the NMT
state Operational creates all PDOs; the "constructor" uses the parameters as described
in the object dictionary.

• cNmtStateStopped (4) :
The CANopen device is forced to stop the communication altogether (except node
guarding and heartbeat, if active)

Details about the 'NMT state machine' of a CANopen device could be found in CiA 301
(formerly known as 'DS 301'..), Version 4.2.0 (Februrary 2011), chapter 7.3.2, pages 83 to 85.
The restrictive terms of use (in CiA 301) don't allow us to duplicate that information here; so
please obtain a copy of that document from CiA yourself.

cop.node_id
Retrieves the CANopen node-ID (1..127) of the device on which the script is running.
The value is read-only. To modify a device's node-ID, use the system setup.

cop.SendNMTCommand(int node_id, int wanted_nmt_state)
Sends an NMT message to the CANopen network to switch the desired node(s) into the
wanted NMT state.
Valid CANopen nodes IDs are 1 to 127. In addition, for the NMT (Network Management)
protocol, node-ID zero can be used to address 'all nodes' in the network.
If the node-ID matches the local node ID, the local node also transits to the new state.
The NMT state can be one of the following constants (which are also used for cop.nmt_state):

• cNmtStateBootup : force re-booting (Bootup), actually sends the 'Reset Node'
command to one or all slaves.

• cNmtStatePreOperational : switch one or all slaves into the 'Pre-Operational' state.

© MKT / Dok.-Nr. 85122 Version 2.2 157 / 220

../help/progt_01.htm#upt_system_menu
http://www.can-cia.org/
../help/sdocm_01.htm#sdo_abort_codes

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• cNmtStateOperational : switch one or all slaves into the 'Operational' state.
• cNmtStateStopped : switch one or all slaves into the 'Stopped' state.

Return value (if cop.SendNMTCommand was called as a function) :
 TRUE = ok
 FALSE= error (function not available, illegal node ID, illegal NMT command, ...)

See also: cop.nmt_state : Retrieves the device's own momentary NMT state.

cop.SetPDOEvent(int pdo_comm_par_index)
Sets an 'event-'flag for a certain PDO which may cause immediate transmission.
The PDO is identified by the CANopen OD-index of its 'PDO communication parameter', for
example:
 0x1800 = first transmit-PDO, 0x1801 = second transmit-PDO, etc.
If setting a PDO's 'event' really causes an immediate transmission depends on the PDO's
transmission type. The transmission type is usually defined in the programming tool's PDO-
communication-parameter dialog. It may be also affected by a TPDO's optional inhibit time
(which limits the maximum frequency at which a PDO can be transmitted).
Return value (if cop.SetPDOEvent was called as a function) :
 TRUE = ok (PDO-event-flag was successfully SET)
 FALSE= error (function not available, illegal CANopen-OD-Index, etc...)

See also:

• The display terminal's own (local) CANopen object dictionary (OD)

• Object 0x5001 in the CANopen OD : PDO-mappable 'Keyboard Matrix Bits'

• Features of programmable terminals with "CANopen V4"

• PDO-Mapping (Defining the contents of 'Process Data Objects')

• SDO Abort Codes (Error codes used when communicating via CANopen SDO)
• CANopen specifications from CiA (CAN in Automation), most important: CiA 301

© MKT / Dok.-Nr. 85122 Version 2.2 158 / 220

http://www.can-cia.org/index.php?id=specifications&no_cache=1
../help/sdocm_01.htm#sdo_abort_codes
../help/pdomapdlg_01.htm
../help/cano4_01.htm
../help/objdict_01.htm#obj_5001
../help/objdict_01.htm
../help/pdocomdlg_01.htm#tr_type
../help/pdocomdlg_01.htm#tr_type

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 17 4.10.15 Extensions to the script language for J1939

So far, the support for SAE J1939 in the script language is only described in german language,
details here .

 18 4.10.16 Extensions to the script language for ISO 15765-2 (aka "ISO-TP")

The support for ISO 15765-2 (aka "ISO-TP") in the script language isn't finished yet. Until then,
some preliminary information about how to implement parts of the "ISO Transport Protocol" can
only be found in the documentation in German language .
A crude (and yet untested) sample script is provided along with the programming tool.
Due to the lack of a suitable test environment (ECU with proper documentation), the ISO-TP
functions could not be tested so far.

 4.11 Event Handling (handling system messages and similar events in the script)

As a replacement for the 'event definitions' in the display interpreter, the script language can be used
to react when the user 'does something' on a display page, press a key, operate the touchscreen, or
the rotary encoder. The script may even intercept(!) certain events, i.e. disable the default message
handler for that event.

In the script language, system messages / events can be handled by simply adding your own
message handler. The return value of a message handler (function) tells the system if the message
shall be discarded (because your script has processed it, and doesn't want the message be passed to
the 'default' message handler). More on this later. Let's begin with the "lowest level" of message
processing: Keyboard events, rotary encoder events, and (depending on the device capabilities)
touchscreen events.

Note:
Message handlers in the script language will interrupt the normal
program flow for a few milliseconds.
An event handler must return as soon as possible - ideally after less than
50 milliseconds.
If the script gets stuck in an event handler, the handler will be terminated
("killed") after approximately 500 ms, and the event will be handled by
the system instead.
So keep your message handlers as short as possible, and return as
quickly as possible !

To avoid 'slow processing' in an event handler, just set a signal ("flag")
for the script's main loop, and perform the actual processing there.

Don't use potentially blocking commands (like wait_ms, inet.send,
inet.recv, inet.connect) in your event handlers ! Invoking such
commands from within the event handler increases the risk of abnormal
termination of the handler as explained above.

© MKT / Dok.-Nr. 85122 Version 2.2 159 / 220

../help/progt_01.htm#event_defs
../help/scripting_49.htm#ISO_TP
../help/scripting_49.htm#J1939

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Similar restrictions also apply to calling the script from the display interpreter.
If the time specified above is not sufficient for your event handler, and staying in the handler for so
long is unavoidable, the maximum time spent in the handler can be prolonged by feeding a
watchdog in the handler... but this could have the side effects already mentioned before (sluggish
response to user input, protocol timeouts, etc).

All event handlers listed in the following chapters are activated after the script finished its own
initialisation (e.g. preset global variables, load strings from translation files, etc). At the end of the
initialisation sequence (in the script sourcecode), the script should invoke the command init_done to
let the system know when the script is "open for business". Amongst others, this enables the event
handlers.
Example (from script_demos/ButtonEventDemo.cvt):

var
 int i,imax;
 int CanSignals[10]; // declare an array with 10 integers
endvar;

// Initialize the script's own variables:
imax := CanSignals.size(0)-1;
for i:=0 to imax
 CanSignals[i] := 11*i; // fill array with defaults
next i;

init_done; // let the system know "we're open for business" (enable event
handlers)

 ...

func OnControlEvent(
 int event, // [in] type of the event, like evClick, etc
 int controlID, // [in] control identifier (from page-def-table)
 int param1, // [in] 1st message parameter, depends on event
 int param2) // [in] 2nd message parameter, depends on event
 // Called when 'something happens' with a certain control element
 // (button, menu item, edit field, etc) on the current display page .
 ...

If there is no explicit call of 'init_done' in a script, the compiler will automatically set an internal
flag (which would otherwise be set by calling 'init_done' from your application), so event handlers
can be invoked immediately after compilation.

 1 4.11.1 Low-level system event handlers

To react on, or even intercept, low-level system messages, define one or more of the following
handlers in your script.

func OnKeyDown(int keyCode) // a 'normal' key has just been
pressed
func OnKeyUp(int keyCode) // a 'normal' key has just been
released

© MKT / Dok.-Nr. 85122 Version 2.2 160 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

func OnKeyMatrixChange(int oldMatrix, int newMatrix) // keyboard
matrix changed
func OnEncoderButton(int button) // rotary encoder button pressed
or released
func OnEncoderDelta(int delta) // rotary encoder position
changed by 'delta' steps - see example
func OnPenDown(int x, int y) // pen has just been pressed on
touchscreen
func OnPenUp(int x, int y) // pen has just been released
from touchscreen
func OnPenMove(int x, int y) // pen coordinate (on
touchscreen) changed, WHILE pen down
func OnGesture(int gestureCode, int gestureSize) // touchscreen
gesture finished, pen up again
proc OnPageLoaded(int iNewPage, int iOldPage) // a new display
page was loaded (from FLASH)
proc OnPageEnter(int page_nr, string page_name) // the specified
display page is just being "entered"
proc OnPageQuit(int page_nr, string page_name) // the specified
display page is just being left
proc OnPageUpdate(int page_nr, string page_name, int element
[,..]) // rendering page in framebuffer
proc OnLocationChanged() // GPS receiver has reported a
new position and/or time (gps.xyz)
proc OnSystemShutdown(int iReason) // System is about to be SHUT
DOWN (turned off)

The above handlers don't need to be registered. They will automatically be called when
implemented in the script, with the function parameters telling the script 'what exactly' has
happened (for example, which key has been pressed or released, or the touchscreen coordinate, why
the system is being shut down, etc).

For some other kinds of events, arbitrary handler names can be used, for example CAN-Receive-
and Timer- events. But even in those cases, we suggest to use consistent names beginning with
"On", to tell event handlers from 'normal' functions in the script language.
A few examples:

func OnCAN_ID123(tCANmsg ptr pRcvdCANmsg) // CAN-Empfangs-Handler (activated by
can_add_id)
func OnTimer1(tTimer ptr pTimer) // Timer-Event-Handler (started by
setTimer)

The handler may return an integer value of 0 (zero = FALSE) to let the default message handler
process this event as usual; or 1 (one) which means "I have handled this event in my script, and
don't want to let the system handle it". This way, the normal keyboard processing can be (almost)
completely disabled by returning 1 (one = TRUE = "message has been handled").

© MKT / Dok.-Nr. 85122 Version 2.2 161 / 220

../help/gestures_01.htm#user_defined_gestures
../help/gestures_01.htm#user_defined_gestures

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Note:
If a user-defined event handler doesn't use the 'return <value>' statement, the function returns
with an integer value of zero. This means, if an event handler in the script language doesn't
return with an explicit value, the event will be handled by the system as usual (which means
the event-message will not be suppressed).

A few simple examples for event handlers can be found in the 'EventTest' application.

 1.1 4.11.1.1 OnPageLoaded(int iNewPage, int iOldPage)
If implemented in the script, this event handler will be called immediately after loading a new
display page from FLASH, before entering and updating the page (i.e. before it gets visible in the
framebuffer).
This handler was used for internationalisation, by translating all strings from the 'designed' language
into the user's configured language at runtime. An example can be found in the 'internationalisation
demo' (programs/script_demos/i18nDemo.cvt).

 1.2 4.11.1.2 OnPageEnter(int page_nr, string page_name)
This optional event handler will be called whenever the specified display page is being 'entered', i.e.
shortly before it gets rendered into the framebuffer (-> OnPageUpdate) and shortly after the page
was loaded from FLASH (-> OnePageLoaded).

 1.3 4.11.1.3 OnPageQuit(int page_nr, string page_name)
This optional event handler will be invoked immediately before leaving the current display page,
i.e. shortly before calling OnPageEnter() for the new display page.
In OnPageQuite, the function arguments page_nr and page_name apply to the old display page.

 1.4 4.11.1.4 OnPageUpdate(int page_nr, string page_name, int iElement)
  or   OnPageUpdate(int page_nr, string page_name, int iElement, tCanvas
*pCanvas)
This optional event handler will be called multiple times whenever rendering ("updating") a display
page. The handler is intended for advanced graphic output 'directly into the framebuffer', whenever
the specified page is being updated by the display interpreter. As most other OnPage-handlers, the
first two function arguments indicate the number and the name of the page being updated.
The third argument (element, an integer array index into the current display page's elememts
(display.elem[iElement]), informs the script about which element is about to be rendered into the
framebuffer (thus multiple calls during a single page update):

iElement = 0 : Call to paint "in the background of any other display element".
OnPageUpdate() called between clearing the page's background (in most cases, filling the
entire framebuffer with the page's background colour) and painting the first display element
(with array-index zero, remember most array indices in the script language are zero-based.
display.elem[iElement] is one of them.
If the script paints anything into the framebuffer during this call, the painted whatever-it-is
will appear in the background, behind all 'programmed' display elements of the current page.

iElement = 1 :

© MKT / Dok.-Nr. 85122 Version 2.2 162 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

OnPageUpdate() called between rendering the first element (array index zero) and the second
(array index one).
If the script paints anything into the framebuffer during this call, and display elements overlap
on the screen, the painted whatever-it-is will appear between those elements.

iElement = 2 .. <number of elements on the current display page - 1> :
OnPageUpdate() called between rendering the N-th and N+1-th element, to control the Z-
order as explained above for iElement = 1.

iElement = 255 : Call to paint "in front of any other display element".
OnPageUpdate() called after rendering all display elements on the current page, a few
microseconds before flipping between the two framebuffers to make the new page visible on
the screen.
If the script paints anything into the framebuffer during this call, the painted whatever-it-is
appears in the foreground, in front of any 'normal' display element.

Again: If it exists in your script, the OnPageUpdate()-handler is called multiple times during a
single page-update as explained above. You don't want to waste time in your script by painting the
same element multiple times !
Instead, to control the Z order of anything you want to paint in the OnPageUpdate()-event, use a
select-case block as in the "MacPan" demo.
The fourth (optional) parameter, pCanvas, can be used to paint "directly" into the framebuffer,
using any of the Canvas drawing functions listed here.

 2 4.11.2 Mid-level event handlers (events from visible controls on a UPT display
page)
If a system message was not intercepted by a low-level event handler (see previous chapter), it may
be propagated to the next level of event handling. This is, in most cases, related to the visible
control elements (like buttons, menu items, edit fields, etc) on the current display page.

func OnControlEvent(int event, int controlID, int param1, int param2) // event
from a 'visible control element'

This handler may be called for a number of different events. The first function argument indicates
which event was detected :

event : can be one of the following symbolic contstants (in fact, integer numbers):
evClick : "the control element has been clicked, or the enter key was pressed while it
was focused"
evPenDown : "the touchpen has just been pressed, and the touchscreen coordinate was in
the control's client area"
evPenMove : "the touchpen has been moved, while pressed within the control's client area"
evPenUp : "the touchpen has just been released, and the touchscreen coordinate was
still in the control's client area"
evKey : "a key was sent to the control, while it had the input focus"
evBeginEdit: "An edit field has just been switched into the 'editing' state". Purpose: see

© MKT / Dok.-Nr. 85122 Version 2.2 163 / 220

http://en.wikipedia.org/wiki/Z-order

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

display.EditValueMin / Max.
evEndEdit : "Editing has just been finished". Purpose and details here.

controlID : user-defined integer value (a constant) to identify the control which fired the event.
The author strongly suggests to use user-defined constants for these identifiers.
The control-ID (also as symbolic constant, details below) must be entered in the field labelled
'Control ID' in the UPT programming tool's page definition table / display line properties.

Assignment of a Control-ID in the programming tool

If a control element doesn't have an ID (i.e. the 'Control ID' field is empty), it will not fire a
control event.
We strongly recommend to decorate the names of all control IDs with the prefix 'id', for
example idBtnUp, idBtnDown, idBtnLeft (use 'talking names' whereever possible). When
defining a control element on the 'Page #X' tab, the control ID can be picked from a list (after
double-clicking the 'Control ID' field):

Screenshot with a list of user-defined script contstants,
after double-clicking on 'Control ID' in the programming tool.

The control-ID can also be used to access the display element from within the event handler,
using a statement like
display.elem_by_id[controlID].xyz (xyz=component of the display element).

param1 : first message parameter. The meaning depends on the event-type :
For evPenDown and evPenUp, param1 is the touchscreen 'X' coordinate, param2 the 'Y'
coordinate,
both are graphic client coordinates (x=0, y=0 is the control's upper left corner).
To convert a coordinate into text coordinates (of a text panel),
divide X (measured in pixels) by tscreen.cell_width,
and Y (also measured in pixels) by tscreen.cell_height.

© MKT / Dok.-Nr. 85122 Version 2.2 164 / 220

../help/pgacc_01.htm#disp_components
../help/progt_01.htm#display_elements_with_control_ID
../help/progt_01.htm#page_def_line_props
../help/progt_01.htm#display_elements_with_control_ID
../help/progt_01.htm#edit_fields_with_custom_range

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

For evKey, param1 contains the keyboard code of the key sent to the control.

For events evClick, evBeginEdit and evEndEdit, param1 contains the element index of the
control element which 'fired' the event.
This allows to tell multiple controls (display elements) with the same Control-ID from each
other.
To selectively access the sender (element which 'fired' the event), use
display.elem[param1].xyz (where xyz is the component of the element).

param2 : second message parameter. The meaning depends on the event-type (eg. 'Y').

An example using 'OnControlEvent' can be found in the 'EventTest' application.
A more sophisticated example is the 'custom pop menu', which uses a text panel and touchscreen
event handlers to show a menu (or selection list).

See also:
 Events fired by a 'table' (visible control element),
 events fired by a 'diagram' (also a display element),
 events fired by the virtual keyboard,
 activating event handlers after the initialisation with the 'init_done' command.

 3 4.11.3 Timer Events

As already mentioned in the chapter about 'Other functions and commands', the command setTimer
starts a periodic timer in the script language.
The optional (third) parameter in the argument list is the name of a timer event handler, for
example:

 var
 tTimer timer1; // Declaration of a timer instance as a global variable
of type 'tTimer'
 endvar;
 ...
 setTimer(timer1, 100, addr(OnTimer1)); // Start 'timer1'
 // with an interval of 100 milliseconds, to call 'OnTimer1'
periodically
 ...

The (function-) name of the timer event handler can be selected freely. We recommend using a
descriptive name with the prefix 'On' (as in all event handlers), to tell handlers from ordinary
functions. Of course if a script contains multiple timer event handlers, their names must be unique.

In the script language, timers will fire events periodically as long as they are not stopped. Whenever
a timer's interval expires, the timer's "expired" flag (a component of struct tTimer) is set in the timer
variable. If (as in the example shown above) the name of a timer-event-handler has been speficied,
that handler will be called shortly after the 'expired' flag has been set.
The timer variable will be passed to the timer event handler as a pointer (address), so the event

© MKT / Dok.-Nr. 85122 Version 2.2 165 / 220

../help/diagr_01.htm#events
../help/table_01.htm#events
../help/pgacc_01.htm#disp_components

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

handler can easily access it (to start, or modify its own timer).
For that purpose, the timer event handler must be properly defined (as a function which expects the
address of a tTimer object):

 func OnTimer1(tTimer ptr pMyTimer) // periodically called Timer Event
Handler
 local tCANmsg msg; // declaration of a CAN-Message as a local variable
 msg.id := 0x334; // set the CAN message ID (and optionally the bus
number in the MSBits)
 msg.len:= 8; // set the CAN data length code (max. 8 bytes = 2
DWORDs)
 msg.dw[0] := 0x11223344; // set the first four bytes in the message
data as a DWORD (32 bit)
 msg.dw[1] := 0x55667788; // set the last four bytes in the message data
as a DWORD
 can_transmit(msg); // send the CAN bus message
 return TRUE; // TRUE = 'the event has been processed' (FALSE would not
fire more events)
 endfunc; // end OnTimer1

If a timer event handler returns 'TRUE' (1), the 'expired'-flag will be cleared by the system, and the
timer event handler will be called again (when the next interval has expired).

If a timer event handler returns 'FALSE' (0), the 'expired'-flag will NOT be cleared, and the event
handler won't be called again (i.e. "single shot" operation).

More examples for timer events (in the script) can be found in chapter 4.
See also: wait_ms(0) (to immediately handle all pending timer events).

 4 4.11.4 CAN Receive Handlers

In addition to the polling-method explained in the chapter about CAN functions (i.e. cyclically
calling can_receive from the main loop), event handlers can be implemented in the script which are
automatically called on the reception of certain CAN messages (precisely, handlers called on
reception of certain CAN-message or LIN-frame IDs).
This way, the response time can be significantly reduced (in comparison with the polling method).

The following example shows a simple CAN message handler, which must be registered by calling
can_add_id(<CAN-ID>, <name of the handler>) or (to receive multiple IDs)
CAN.add_filter(<filter>, <mask>, <name of the handler>).

 can_add_id(0x0000123, addr(CAN_Handler_ID123)); // register CAN-ID and
a receive-handler
 can_add_id(0x0000124, addr(CAN_Handler_ID123)); // another CAN-ID for
the same handler

 ...

© MKT / Dok.-Nr. 85122 Version 2.2 166 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

If, as in the following example, the handler shall be called whenever a certain message defined in a
CAN database (*.dbc) was received, the script can retrieve the CAN-message-ID from the database
via display.GetVarDefiniton(). This way, the script only needs to know the signal name (here:
"Oeldruck" = oil pressure) but not the hexadecimal CAN message ID:

 var
 tDisplayVarDef ptr pVarDef; // pointer to the definition of a display-
variable
 endvar;

 ...

 pVarDef := display.GetVarDefinition("Oeldruck"); // get database
entry for "Oeldruck"
 can_add_id(pVarDef.CAN_Msg_ID, addr(CAN_Handler_Oeldruck)); // register RX-
handler for "Oeldruck"

 ...

A CAN message handler doesn't need to be restricted to a single message ID. Use a select block to
implement 'special' processing for certain IDs as in this example:

 func CAN_Handler_ID123(tCANmsg ptr pRcvdCANmsg)
 // CAN-Receive-Handler for certain 'important' CAN message identifiers.
 // Interrupts normal processing, and must return to the caller a.s.a.p. !
 select(pRcvdCANmsg.id) // Take a look at the CAN message identifier...
 case 0x123: // message ID 0x123 (hex)
 CAN.DecodeMessage(pRcvdCANmsg); // update display variables
IMMEDIATELY
 if(display.ValueFromMessageID123 > 123.0) then
 IllegalValueCounter := IllegalValueCounter + 1;
 endif;
 return TRUE; // 'handled' here; do NOT place this message in the
script's CAN-RX-Fifo
 case 0x124: // message ID 0x124 (hex)
 case 0x125: // message ID 0x125 (hex)
 return TRUE; // 'handled' here; do NOT place this message in the
script's CAN-RX-Fifo
 endselect;
 return FALSE; // did NOT handle this message here; let the system place it
in the CAN-RX-Fifo
 endfunc; // end CAN_Handler_ID123

A CAN receive handler will be called shortly after the reception of a matching CAN message,
which interrupts the normal script processing (and other functions of the programmable terminal).
The handler is called even before the 'CAN signals' which may be contained in the message are
decoded into 'display variables' (thus the need for CAN.DecodeMessage; see notes further below).
For technical reasons, this interruption may only require a few dozen milliseconds - see details in
the yellow info box in the chapter about event handling in the script language.
While the handler is being executed, the device cannot perform other tasks !

© MKT / Dok.-Nr. 85122 Version 2.2 167 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

If the event handler (function) doesn't 'voluntarily' return to the caller within 500 milliseconds, its
execution will be suspended to keep the device operational. The system (firmware) will assume a
return value of zero (0), which means the received CAN message will be passed to the system's
default-handler for CAN reception.

Meaning of any CAN receive handler's return value :

• FALSE (0) : The handler did not process this message.
The system's default handler (implemented in the firmware) will copy the message into the
CAN-receive-buffer,
from where it can be drained by periodically calling can_receive in the script's main loop.

• TRUE (1) : The handler has processed the CAN message.
The received message shall not be placed in the CAN-receive-buffer mentioned above.

A complete example with a CAN-receive-handler can be found in the application ScriptTest3.cvt .

Notes (concerning CAN receive handlers in the script):

• Because any CAN receive handler shall be invoked as fast as possible by the system
("interrupt-like"), the signals contained in the received CAN message have not yet been
decoded for the display at that time !

• If the CAN receive handler returns TRUE, it indicates having processed the received
message 'itself' (completely), which -as explained further above- causes the system not to
place the received CAN message in the displays's receive FIFO. For this purpose, the CAN-
receive-handler must be called before the display decodes the CAN message's data field.

• If, despite the above, your script needs to process the signals immediately in the CAN
receive handler, it can either decode the required signal(s) itself... for example:
 EngineSpeed := pRcvdCANmsg.bitfield[0,16] * 0.3333; //
decode received CAN signal
(where 'EngineSpeed' is a script variable, if possible declared as a local variable)

• ... or (alternatively): The CAN receive handler can force immediate decoding of all signals
(in the received message) by the display, using the following command:
 CAN.DecodeMessage(pRcvdCANmsg); // decode all signals in
the received CAN message
(after that, the signals from 'pRcvdCANmsg' are accessable in display variables, imported
from a DBC file)

• If the received CAN messages are in fact 'simulated' by the CAN Logfile Player, the player
will automatically be paused when the script hits a breakpoint in the debugger.
This allows examining the CAN message (which caused the call of the receive-handler) in
the programming tool's 'Errors and Messages' tab.

• If the received CAN messages originate from the programmable CAN-Simulator, a
breakpoint in the script (e.g. in the receive handler) can also pause the CAN simulator. This
option was very helpful when implementing an own transfer protocol in the script (display).

© MKT / Dok.-Nr. 85122 Version 2.2 168 / 220

../help/CANSimulator_01.htm#sync_display_app_and_CAN_simulator
../help/CANSimulator_01.htm
../help/progt_01.htm#error_page
../help/progt_01.htm#can_logfile_player_paused_by_script_debugger
../help/candb_01.htm#import_signal_defs

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• A single received CAN message may result in multiple calls of registered CAN receive
handlers. Example: A received CAN message, ID 0x123, may cause calling an event handler
registered via can_add_id(0x123,...) and another handler registered via
CAN.add_filter(0x000, 0x000, ...), i.e. a handler for "everything".
It may even be possible that the same handler is called twice, because it's perfectly legal to
register one handler multiple times (for different IDs, or ranges of IDs). Such a handler may
be called multiple times, until one of them returns TRUE (which means "I have processed
the message, and don't want it to be passed to anyone else" from the script's point of view).
The calling sequence is as follows: First, all handlers registered via can_add_id() are called
(until one of them returns TRUE), then (if none of them returned TRUE) the received
message will be passed to the handler registered via CAN.add_filter().

 5 4.11.5 Event handler for the virtual keyboard

Similar as events fired by user-defined graphic controls (OnControlEvent), events from the virtual
keyboard can also be processed or intercepted by an event handler in your script. For that purpose,
define the following function in your script (case sensitive):

func OnVirtualKeyboardEvent(int event, int param1, int param2) // event from
the 'virtual keyboard'

In contrast to the OnControlEvent handler, there is no 'control ID' here, because the virtual
keyboard only exists in a single instance.
Parameters 'event', 'param1' und 'param2' have the same meaning as in the OnControlEvent handler
(details there).
As of 2020-07-07, the following events could be processed in OnVirtualKeyboardEvent (first
argument, parameter 'event'):

evChar
Operator pressed a (virtual?) key with the code (ASCII) in param1.

evBeginEdit
The virtual keyboard has just been switched into mode 'Editing' (with its own edit field now
visible).

evEndEdit
Input into the virtual keyboard's own edit field has just been finished.
Especially important with command vkey.connect:
The edited text can now be read from vkey.text.
If OnVirtualKeyboardEvent() returns TRUE for this event, i.e. "the event has completely been
processed by the script, then the text from the edit field will not be copied back into the
variable specified in vkey.connect().

evClick
Operator clicked 'somewhere into the client area' of the virtual keyboard,
depending on the hardware also by pressing the rotary encoder knob or the 'Enter'-key while
the virtual keyboard was focused.

© MKT / Dok.-Nr. 85122 Version 2.2 169 / 220

../help/OnControlEvent
../help/touchscreen_01.htm#virtual_keyboard
../help/touchscreen_01.htm#virtual_keyboard

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Examples for using the virtual keyboard under script control can be found in the applications
script_demos/VKeyTest.cvt and script_demos/TableTest.cvt .

See also:
  Controlling the virtual keyboard via script

 6 4.11.6 Advanced message handling functions

At the time of this writing, the following functions were not implemented yet but planned:

• message.register(<message_id>, <flags>) : registers a certain message to be processed
(handled) by the script .

• message.deregister(<message_id>) : de-registers (un-registers) a certain message, i.e.
informs the system that the script doesn't want to handle this type of message anymore.

• message.peek(out tMessage msg) : Checks if one of the registered messages is waiting in
the message queue. If it is, the message is removed from the queue (and copied into 'msg'),
and the function returns 1 (one, TRUE). Otherwise (if there is no message waiting in the
queue), the function returns immediately with result 0 (zero, FALSE).

• message.get(out tMessage msg, int iTimeout_ms) : Checks if one of the registered messages
is waiting in the message queue. If it is, the message is removed from the queue (and copied
into 'msg'), and the function returns 1 (one, TRUE). Otherwise (if there is no message
waiting in the queue), the function waits for the arrival of the next message. If, during the
specified timeout value (in milliseconds) no message arrives, the function returns with result
0 (zero, FALSE). Besides the 'blocking' (waiting) behaviour, there is no difference between
message.peek and message.get !

• message.post(<receiver>, <message_id>, <param1>, <param2>, <param3>) : Places a
message in the message queue for the specified 'Receiver', which may be something like a
window (future plan !). Note that, unlike message.send, message.post returns immediately
--- before the receiver has actually processed the message !

• message.send(<receiver>, <message_id>, <param1>, <param2>, <param3>) : Sends a
message to the specified 'Receiver' (future plan) or (with iReceiver=0) to the system's
default message handler. Note that, unlike message.post, message.send does not return until
the message has actually been processed (in other words, it "blocks" the caller). This is not
possible with all message types, especially not with those messages which can only be
handled in different tasks, or even interrupt service handlers !

The tMessage structure will be specified here in a future version of this document. Most likely, it
will be similar to (but not compatible with) Borland's TMessage type .

The message IDs (not to be confused with "CAN" message IDs !) are defined as constants in the
script language. Their prefix depends on the message class. For example, messages beginning with
wm... have a similar purpose like 'windows messages' (even if there is no 'Windows' under the hood
of the programmable displays). Some of these messages can be used for interaction between the
script program, and the graphic user interface. Most notably:

© MKT / Dok.-Nr. 85122 Version 2.2 170 / 220

../programs/script_demos/TableTest.cvt
../programs/script_demos/VKeyTest.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• wmTouchPenDown, wmTouchPenMove, wmTouchPenUp, wmTouchDblClick": low-level
touchscreen messages .

• wmEnterDblClick : double-click with the 'Enter' button, whatever the enter button is (it may
be a real key, or the rotary encoder button) .

• wmEncoderBtnDown, wmEncoderBtnUp, wmEncoderDblClick, wmEncoderMovedDelta :
low-level rotary button events .

Note: Depending on the 'flags' parameter, specified in the message.register command, you can
completely 'intercept' certain message types by the script, so they will not be handled by the system
anymore.

< To Be Completed ... >

© MKT / Dok.-Nr. 85122 Version 2.2 171 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 4.12 Preprocessor Directives

 1 4.12.1 #pragma

Similar as in "C", the #pragma directive is used to pass optional info to the compiler.
'Unknown' pragmas shall be ignored, but not throw an error.
So far, the following pragmas are implemented in the script language:

#pragma strict : Only allow declared variables.

 2 4.12.2 #include
This directive inserts the contents of an 'include file' into the sourcecode. In august 2016, this
feature was still under construction.

Syntax:
 #include "<Filename without path>"

Because the target system (e.g. MKT-View) cannot access the include files on the development PC,
the programming tool loads the sourcecode from all included files (when compiling the script on
the PC), and copies the included text into the loaded application. When saving the application in a
CVT- or UPT file, or transferring the application into the target (via CAN, etc), the included text is
still present (inserted in the script as explained below), so the embedded script compiler can
translate everything, even without a memory card or access to the PC's file system.

Whenever an application is loaded into, or compiled in the programming tool, the contents of all
included files will also be loaded (updated), overwriting the old included fragments (when already
present from an older include-file).

For technical reasons, the text loaded from an include file is visible in the script editor / debugger.
Editing the text loaded from the include file is useless ! It will be replaced with the text from the
include file on the next compilation. To modify the include file, edit the include file itself, but not
the script which #includes it. Unfortunately, the 'Rich Text' edit control (used in the programming
tool) cannot protect individual paragraphs from being edited. At least, the text loaded from the
include file by the compiler will be marked with a special background colour in the editor/debugger.
The background colour also indicates if the text could be loaded successfully in the last
compilation:

 Yellow
The include file could not be loaded; the yellow paragraph originates from a possibly
outdated file (located on a different PC, or outside the currently configured 'include file path'
in the programming tool).

 Lightgray
The include file was successfully loaded when the script was last compiled.
(Note: The programming tool immediately compiles the script after loading a *.upt or *.cvt
file.)

© MKT / Dok.-Nr. 85122 Version 2.2 172 / 220

../help/progt_01.htm#programming_tool_directories

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

To create or develop your own include files, copy fragments from an existing application into a
plain text editor (like Notepad++), and save it as a plain ANSI text in the tool's configurable
include directory. We suggest to use the file name extension 'inc' (for 'include'), even though at the
moment (2016) the script compiler doesn't care for the file extension (not yet..) .
When "loading" an include-file as mentioned above, the script compiler inserts two additional lines
in the script (directly after the #include directive), to mark the begin and the end of the included
text. Like the included text itself, these lines must not be edited:

##begin_include "Test.inc" date=2016-08-04_16:24:10 // DO NOT EDIT
THIS PART !

This line is inserted before the first line read from the include file.
For testing, it also contains the name and the last modification date of the included file.

##end_include "Test.inc"
This line is inserted directly after the last line read from the include file.
It marks the end of the included text, which is important for the compiler to remove this
fragment before 're-loading' the include file in the next compilation.
For testing, the name of the included file is also repeated in this line.

A simple example for using include files is presented here.

 4.13 Keyword List

Even though the script compiler is not case-sensitive, 'basic' keywords which should be written in
lower case (more or less a matter of taste). Crossed out (xyz) means 'the keyword may exist in
future versions, but was not implemented at the time of this writing'.

See also: Quick Reference, Operators, Constants .

Keyword
Argument list
or syntax

Return
value

Remarks

abs
-> Math.abs, returns the absolute (non-negative) value,
or (with two arguments) the length of a vector .

and A and B integer
boolean AND operator, same as the "C"-compatible operator && .
The result is 1 (one, TRUE) if both operands are non-zero;
otherwise 0 (FALSE).

anytype
Data type to declare varibles which can accept 'int','float','string', and others.
To check momentary type such a variable, use the

addr (variable) pointer Returns the address of the specified variable.

append (dest,source[,index]) -
Appends a string (source) to another string or binary block (dest).
Result in 'dest'.

atan ->Math.atan2(y,x) arctangent

atof (string) float "ascii to float". Converts a decimal string into a floating point number

atoi (string) integer "ascii to integer". Converts a decimal string into an integer number

BIT_AND A BIT_AND B integer
Performs a bit-wise AND operator.
Same as "&" in the "C" programming language.

© MKT / Dok.-Nr. 85122 Version 2.2 173 / 220

../help/progt_01.htm#programming_tool_directories

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

For example, 5 (101 binary) BIT_AND 3 (011 binary) gives 1 (001 binary).

BIT_OR A BIT_OR B integer
Performs a bit-wise OR combination of two operands.
Same as "|" in the "C" programming language.
For example, 5 (101 binary) BIT_OR 3 (011 binary) gives 7 (111 binary).

BIT_NOT (unary operator) integer

Performs a bit-wise NOT on the operand on the right side of this
Example: BIT_NOT 0xFFFF0000 gives 0x0000FFFF.
For compatibility with "C", BIT_NOT is the same as the tilde (~).
This operator is often used to invert bitmasks, as in

BytesToFloat (exp, m2, m1, m0) float
Combines four bytes into a IEEE 754 32-bit floating point
The first 8-bit argument (exp) contains the exponent's sign and 7 data bits.
The last 8-bit argument (m0) contains the least significant bits of the mantissa.

BinaryToFloat (32-bit 'DWORD') float
Almost like 'BytesToFloat', but the four bytes are passed as a single 32-bit
value in little endian byte order, aka 'Intel format'.

FloatToBinary (32-bit 'float')
32-bit int
(binär)

Inverse to 'BinaryToFloat'. Returns the "binäry bit pattern" of a 32-bit
floating point value as a 32-bit Integer.
The bit pattern itself is not modified -
all this function does is modifying the data type code from 'float' to 'int'.
This function can be used to store a float value in the array
(system.nv[] is an array of integer values, thus without FloatToBinary,
the automatic type conversion would round down to the neareast integer value).

BytesToDouble (exp1,exp0,m5..m0) double
Combines eight bytes into a IEEE 754 64-bit floating point
The first 8-bit argument (exp1) contains the exponent's sign and 7 data bits.
The last 8-bit argument (m0) contains the mantissa's least significant bits.

can_receive integer
Tries to read the next received CAN message from a FIFO.
When successful, the message is copied to can_rx_msg
Otherwise (empty FIFO), can_rx_msg remains unchanged, the result is 0 (zero) .

CAN. (..)
Prefix (and namespace) for other CAN-related commands and functions.
Not for devices with CANopen.

case integer CONSTANT part of a select .. case .. else .. endselect block .

chr (integer code)
Converts an integer character code (0..255, sufficient for "DOS" characters)
into a single-character string .

cls clears the text-mode screen (here: a buffer for multi-line text displays).

cos ->Math.cos cosine function

cop. (..)
Prefix (and namespace) for CANopen-related commands and functions.
Only for evices with CANopen.

DEC (reserved for an optimized 'decrement' operator)

display.xyz Commands and functions controlling the programmable display

dtInteger, etc Data type codes, used in combination with the typeof()

endif end of an if .. then .. [elif ...] else .. endif construct

endwhile end of a while - loop

endselect end of a select .. case construct

© MKT / Dok.-Nr. 85122 Version 2.2 174 / 220

../help/Math_cos
http://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://en.wikipedia.org/wiki/Single-precision

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

endproc marks the end of a user-defined procedure

endfunc marks the end of a user-defined function

elif
part of an if .. then .. elif .. [elif ..] else .. endif construct
("else if", eliminates the need for additional endifs).

else part of an if .. then .. else .. endif, or select .. case ..

EXOR
A EXOR B
 (binary operator)

integer

Operator for a bitwise EXCLUSIVE-OR combination of the two operands.
Often used to toggle (invert) one or more bits in a bitmask.
For example, 5 (0101 binary) EXOR 3 (0011 binary) gives 6 (0110 binary).
Notes:

• The "^" is NOT used as the EXOR operator in the script language !
(A ^ B is reserved for "A power B" in future versions of this language)

• There is no BOOLEAN EXOR, because that would be the same
as the 'not equal' operator .

• The bitwise EXOR operator is often used to toggle bits,
as in this example .

file. prefix for all file I/O functions

float data type for floating point values

for begins a for .. to .. step .. next loop

ftoa
(value, nDigitsBeforeDot,
 nDigitsAfterDot)

'floating point to ASCII'

GOTO stoneage jump instruction, try to avoid whereever possible

GOSUB old subroutine calls, try to avoid ...

gotoxy (x,y) sets the text cursor to the specified column (x, 0..79) and row (y, 0..24)

hex
 alias
HexString

(value, nDigits)
Converts an integer value into a fixed-length hex (hexadecimal)
with the specified number of digits.

BinaryString (value, nDigits)
Converts an integer value into a fixed-length binary
with the specified number of digits.

if (condition) statement begins an IF .. THEN .. ELSE .. ENDIF construct

in defines the following argument (in a formal argument list) as "input"

INC (reserved for an optimized 'increment' operator)

inet. prefix for socket-based internet functions

int integer (data type; 32 bit signed integer)

isin (argument:0...1023) Fast integer sine. Input range 0 (~0°) to 1023 (~360°), output -32767 to +32767.

itoa (value, nDigits)
'integer to ASCII'. Converts an integer value into
a fixed-length decimal string with the specified number of digits.

limit (variable,min,max) - Limits the value stored in <variable> to the specified range.

local defines local variables (exist on the stack until the end of a

log ->Math.log natural logarithm

© MKT / Dok.-Nr. 85122 Version 2.2 175 / 220

../help/Math_log

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Math.xyz Math.pow(), Math.sin(),.. Math functions

MOD

next ends any for .. to .. step .. next loop

NOT
boolean 'NOT' operator (negation). Same as the "!" operator in "C" ("unary not").
The result is 1 (TRUE) if the input is 0 (zero, FALSE);
otherwise (if the input is non-zero), the result is zero.

OR
boolean OR operator, same as the "C"-compatible operator || .
The result is 1 (TRUE) if any of the operands is non-zero; otherwise 0 (FALSE).

out
defines the following argument (in a formal argument list) as "output"
for a procedure or function .

print Prints values into a multi-line "text panel" on the current display page .

cPI constant value "PI" (3.14159....) .

proc Marks the begin of a user-defined procedure

POS

ptr Keyword for a typeless or fixed-type pointer

ramdom (N) Returns a pseudo-random number between zero and N minus one .

return Returns from a user-defined function

repeat begins a REPEAT..UNTIL loop. This kind of loop is executed

REM begins a remark in BASIC. Better use the double slash

rgb (red, green, blue) Composes a colour from red, green, and blue components

RIGHT

select (integer expression) begins a select .. case .. else .. endselect block .

setcolor Sets the foreground- and background colour for output on the text screen .

SIN

SHL (binary operator) Bitwise shift left. Example N := N SHL 8; // multiplies N by 256

SHR (binary operator)

Bitwise shift right. Example N := N SHR 2; // divides N by four
Note: SHR is considered an 'arithmetic' shift right. Negative numbers
remain negative, and positive numbers remain positive.
Thus, SHR expands the sign from bit 31, and 0x80000000 SHR 31
gives the result 0xFFFFFFFF (not 0x00000001) .

SQRT

STR

step defines the counter's stepwidth in a for .. to .. step .. next

stop Stops execution of the script. Useful for debugging.

string data type for a 'string' of characters

system .component-name 'system' variables (current timestamp, etc), and functions

TAN

© MKT / Dok.-Nr. 85122 Version 2.2 176 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

tCANmsg
Data type name for a 'CAN message'.
Also used for the global variable can_rx_msg .

time Date and Time conversions

tMessage data type name for a system message (used for message

to defines the counter's end value in a for .. to .. step .. next

trace .print, .enable, .. Trace History control

tscreen .component-name text-screen buffer object

tScreenCell data type name for a 'text screen cell'

typedef defines a new data type (usually a structure composed of basic data types)

typeof
Retrieves the momentary data type of the specified variable (declared as
The result is usually a data type constant, for example

until (end criterion) ends a REPEAT..UNTIL loop

wait_ms (milliseconds)
waits for the specified number of milliseconds
before executing the next script instruction.

while

See also:

• list of built-in constants

• list of built-in data type names (which are reserved keywords, too)
• list of built-in operators (some of them are also reserved names / keywords, no 'special

characters' !)

4.14 Error messages

Incomplete list - error messages that 'speak for themselves' may be omitted here.
If an error (or warning) occurrs during script compilation, it will be displayed on the programming
tool's Errors & Messages tab.

• syntax error
An error has occured, usually during compilation, which cannot be further diagnosed by the
compiler.

• missing argument
The argument list of a function or procedure call contains less arguments than expected.

• missing left parenthesis

• missing right parenthesis

• missing LEFT square bracket ([)

• missing RIGHT square bracket (])

• missing operand

• type conflict

• division by zero

© MKT / Dok.-Nr. 85122 Version 2.2 177 / 220

../help/progt_01.htm#error_page

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• illegal value

• function unknown

• function permanently unavailable

• function temporarily unavailable

• illegal array index or similar

• missing component

• unknown component

• function failed

• bad array subscript

• illegal pointer or reference

• comma or closing parenthesis expected

• expecting a semicolon

• expecting a comma

• name expected

• var-name expected

• expecting an assignment

• expecting a data type

• expecting an integer value

• undefined variable

• out of memory

• structure or block too large

• illegal channel number

• label not found

• return without gosub

• call stack overflow

• call stack underflow

• call stack corrupted
Occurrs, for example, when a user-defined function tries to return to the caller but finds no
valid return address on the stack (value exceeds program memory size, or negative address).
In fact, the "call stack" is the same stack used for RPN calculations, so if a calculation
illegally overwrites a return address, such errors may occur.

• name or symbol too long
Names of variables, functions, data types, constants, etc are all limited to 20 characters.

© MKT / Dok.-Nr. 85122 Version 2.2 178 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• subscript or indirection too long
Applies to arrays and/or nested structures.
If, for example, A is a one-dimensional array, A[1][2] is illegal ("too many array indices" in
this case).

• bad input
An input-function, or string parser, couldn't handle the input (for example, could not convert
the input characters into a number).

• 'for' without 'next'

• 'next' without 'for'
Often occurrs as a subsequent error when there was a problem in the matching 'for' (error
disappears after fixing the problem in the 'for' statement).

• 'else' without 'if'

• 'endif' without 'if'

• 'case' without 'select'

• 'endselect' without 'select'

• 'endwhile' without 'while'

• 'until' without 'repeat'

• no loop to exit from

• only callable from SCRIPT

• simple variables only

• variable or element is READ-ONLY

• unknown script command

• function not implemented yet

• RPN eval stack overflow

• RPN eval stack underflow

• illegal code pointer

• illegal sub-token after opcode

• cannot use as LVALUE (in assignment)

• not an allowed ARRAY type
The element left of an array subscript cannot be accessed like an array.

• ARRAY type mismatch (dimensions, etc)

• name already defined
The name you tried to use in a variable declaration, type definition, or similar is already in
use.

• missing 'struct' or 'endstruct'

© MKT / Dok.-Nr. 85122 Version 2.2 179 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

• internal error - SORRY !
If you ever encounter this error, please report this error to the developer (Wolfgang
Büscher), along with the sourcecode of the script which was causing it.

• unknown error code (< number >)
An error code has occurred for which there is no entry in the error message table yet.
Please report this error to the developer, along with the error number.

© MKT / Dok.-Nr. 85122 Version 2.2 180 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 5. Examples

The programming tool's installer contains a few 'tests' (used during development) and 'examples'
(planned).

Many of the following examples were generated as 'linked hypertext' with the script editor's
integrated HTML Export Tool. The HTML exporter uses similar syntax highlighting as the script
editor. It also marks keywords by bold characters, which work as hyperlinks into the documentation
(when hovering over keywords and similar elements with the mouse). Names of user-defined
functions and variables are also printed with bold characters, but in the examples the links to a
function's implementation, or a variable's declaration don't work because the following code
snippets usually don't contain the variable declaraction part (etc).

After installing the programming tool (for example in folder c:\MKT\CANdbTerminalProgTool)
you will find the complete script examples in c:\MKT\CANdbTerminalProgTool\Programs\
script_demos*.cvt .

An overview of examples is in the Contents section of this document.

script_demos\CANgate1.cvt
A simple example for a 'CAN gateway' : registers a few CAN message identifiers for
reception, receives messages on CAN1 (first CAN port) and transmits them on CAN2, etc.
Note: In the script language, the two upper bits of the 32-bit 'identifier' field in tCANmsg.id
are used to encode the bus number as a two-bit number.
The procedure 'CANGatewayProcess' is periodically called from the demo's main loop.

proc CANGatewayProcess() // Process received CAN messages in "gateway mode"
 local tCANmsg can_msg; // use local variable wherever possible
 local int can_port; // can port index, 0..3, from a 2-bit-field of
rcvd message
 local int id_only; // can message id, without bus-number-bits

 // As long as there are CAN messages waiting in the FIFO,
 // handle them (can_receive drains the CAN-RX-FIFO and
 // copies the next received message into the specified variable) :
 while(can_receive(&can_msg))

 // Get the two-bit, zero-based "CAN port index" from the upper two bits
in the ID:
 can_port:= (can_msg.id & (cCanIdBit_Bus2 | cCanIdBit_Bus3)) /
cCanIdBit_Bus2;

 // Get the CAN-message-id without bus number (~ is bitwise "not") :
 id_only := can_msg.id & (~(cCanIdBit_Bus2| cCanIdBit_Bus3)); // ID w/o
bus-number

 // Count received CAN frames.. only for debugging purposes
 nFramesRcvd := nFramesRcvd + 1;

 // Show received message if wanted, on the text panel:
 if (show_frames) then

© MKT / Dok.-Nr. 85122 Version 2.2 181 / 220

../programs/script_demos/CANgate1.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 print("CAN"+itoa(can_port+1)+" ",hex(id_only,4)," ", can_msg.len);
 for i:=0 to can_msg.len-1
 print(" ",hex(can_msg.b[i],2));
 next i;
 print("\r\n"); // carriage return + new line
 if(tscreen.cy >= tscreen.vis_height) then
 gotoxy(0,0); // screen 'full'; back to 'home' position
 endif;
 clreol; // clear to end-of-line
 endif; // show_frames ?

 select(can_port) // Note: can_port is an INDEX (2-bit number, can
count from 0 to 3) !
 case 0: // message received from FIRST CAN port ("CAN1")
 // At this point, we know the message was RECEIVED from the first
CAN port
 // because both 'bus number bits' in can_msg.id are CLEARED. For
details,
 // right-click on cCanIdBit_Bus2, then search it in the manual.
 // Modify the received message's 'id' field so it will be
 // tranmitted on the SECOND bus.
 // From the help system: The CAN BUS NUMBER (!)
 // is encoded in the most significant bits (bits 31..30) :
 can_msg.id := id_only | cCanIdBit_Bus2; // modify ID-field(!) to
transmit on CAN2
 // We could also modify the ID (bits 10..0) or the data of the
 // "echoed" CAN message, but in this simple demo, we don't:
 // can_msg.b[0] := 0; // set the first byte in the CAN message to
zero
 can_transmit(can_msg); // send the response

 case 1: // Message received from the SECOND(!) CAN port ("CAN2")
 can_msg.id := id_only; // modify ID-field(!) to transmit on CAN1
 // .. etc, add your own code here ..
 can_transmit(can_msg); // send the response

 case 2: // Message received from the THIRD(!) CAN port ("CAN3")
 // (only available if "CAN-via-UDP" is enabled, MKT-View II/III/IV
only have TWO ports)
 break; // don't send messages from THIS port on any other port

 case 3: // Message received from the FOURTH(!) CAN port ("CAN4")
 // (only available if "CAN-via-UDP" is enabled, MKT-View II/III/IV
only have TWO ports)
 break; // don't send messages from THIS port on any other port

 endselect; // .. can_msg.id & (cCanIdBit_Bus2 | cCanIdBit_Bus3) ..
 endwhile; // end of CAN-message processing loop
endproc; // CANGatewayProcess()

script_demos\CAN_ASC_Logger.cvt
Contains a tiny 'CAN Logger' implemented completely in the script language.
The script registers a few CAN message identifiers for reception.
In the script's CAN-receive-handler, messages with matching ID are logged as a text file
similar to Vector's "ASCII" (i.e. text) format.

© MKT / Dok.-Nr. 85122 Version 2.2 182 / 220

../programs/script_demos/CAN_ASC_Logger.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

When converting CAN frames to 'ASCII' (text), a message with an 8-byte CAN data field
requires at least 64 bytes in the text file. Thus, this format isn't suited to log a 'complete CAN
bus' with all message identifiers, and a large bus load. When tested on an MKT-View IV with
a 'fast' memory card, up to 1800 frames per second could be logged in Vector ASC format.

script_demos\MovgAvrg.cvt : Moving Average Filter
A moderately advanced example. Calculates a moving average over a fixed timespan, using a
timer event and a simple array.
Moving average filters can be used like a lowpass filter to reduce noise in a measured signal.
There used to be a nice description of the principle at en.wikipedia.org/wiki/Moving_average.

In the sample application, the non-filtered test signal (green) and the moving-average-filtered
result (red) are plotted as a Y(t) diagram :

Screenshot 'Moving Average Demo' (programs/script_demos/MovgAvrg.cvt)

Script code fragment from the timer event handler, with moving average calculation:

 // Implementation of the moving average filter
 i := display.FilterIn; // new filter input value
 if(Avrg1NumSummands<C_AVRG_BUF_SIZE) then
 // Didn't reach the 'wanted' length (number of summands) yet :
 Avrg1NumSummands := Avrg1NumSummands+1;
 Avrg1Buffer[Avrg1BufIndex] := i;
 Avrg1Sum := Avrg1Sum + i;
 else // reached the "wanted" queue length : forget 'oldest' value
 Avrg1Sum := Avrg1Sum - Avrg1Buffer[Avrg1BufIndex]; // remove oldest
summand
 Avrg1Buffer[Avrg1BufIndex] := i; // store NEWEST summand in the
buffer
 Avrg1Sum := Avrg1Sum + i; // add newest summand to sum
 endif;
 Avrg1BufIndex := (Avrg1BufIndex+1) % C_AVRG_BUF_SIZE; // new circular
buffer index
 display.FilterOut := Avrg1Sum / Avrg1NumSummands;

© MKT / Dok.-Nr. 85122 Version 2.2 183 / 220

../help/diagr_01.htm
http://en.wikipedia.org/wiki/Moving_average
../programs/script_demos/MovgAvrg.cvt
../help/moving_average_demo.png

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Related topics (about signal processing) : numeric integrator, moving average filter.

script_demos\Integrator.cvt : Numeric Integration
This example example calculates an approximate integral of an input signal, using the
Trapezoidal rule. Similar as in the moving average example, it uses a timer to acquire the
sample at reasonable intervals. An array to store the to-be-integrated values is not required.

var
 int Integr1Reset; // flag to reset (clear) the integrator
 int Integr1PrevTimestamp; // high-res timestamp of the previous sample
 float Integr1PrevValue; // current "integrated" value (sum of areas)
 float Integr1Value; // current "integrated" value (sum of areas)
 tTimer Timer1; // "periodic" timer for data acquisition (or simulation)
 int Timer1Counter;
endvar;

 (...)

//---
func OnTimer1(tTimer ptr pMyTimer) // periodically called Timer Event
Handler
 local int i, timestamp;
 local float f, delta_t;

 // To see this demo 'in action' without CAN signals,
 // provide a dummy signal for demonstration .
 // This signal is not only used as input for the integrator,
 // but also plotted on a display page .
 // Produces a test signal with slow positive + negative pulses .
 i := int(system.timestamp/(4*cTimestampFrequency)); // -> 4 seconds per
step
 select(i % 4) // ___
 case 0: i := 0; // | + |
 case 1: i := 20; // ___| |___ ... (cycle repeats endlessly)
 case 2: i := 0; // | - |
 case 3: i := -20; // |___|
 endselect;
 display.IntegrIn := float(i);

 // -
 // Above: Generation of the staircase "test signal" .
 // Below: Implementation of the numeric integrator .
 // -

 timestamp := system.timestamp; // read current timestamp (see manual)
 f := display.IntegrIn; // get the new input value (to be
integrated)
 if(Integr1Reset) then // 'Reset' the integrator ?
 // (this must be done at least once after power-on) :
 Integr1Value := 0.0; // no areas summed up (keine Flächen
aufaddiert)
 Integr1Reset := FALSE; // 'done' (integrator has been reset)
 else // normal operation: integrate !
 // delta_t = time difference between current and previous sample
[sec],

© MKT / Dok.-Nr. 85122 Version 2.2 184 / 220

http://en.wikipedia.org/wiki/Trapezoidal_rule
../programs/script_demos/Integrator.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 // using the display's high-resolution timestamp
generator :
 delta_t := (timestamp-Integr1PrevTimestamp) / cTimestampFrequency;
 // Numeric integrator, see en.wikipedia.org/wiki/Trapezoidal_rule :
 Integr1Value := Integr1Value + delta_t * 0.5 * (Integr1PrevValue + f
);
 endif;
 Integr1PrevValue := f; // save current input value for the
NEXT time
 Integr1PrevTimestamp := timestamp; // save timestamp for the NEXT time
 display.IntegrOut := Integr1Value; // copy integrated result into a
DISPLAY variable

 Timer1Counter := Timer1Counter + 1; // count number of timer events
(test)
 return TRUE; // TRUE = "keep on firing timer events" (FALSE would stop)
endfunc; // end OnTimer1

The script-generated test signal (green) and the output of the integrator (red) are plotted as a
Y(t) diagramm :

Screenshot 'Numeric Integrator' (programs/script_demos/Integrator.cvt)

By clicking the 'Reset' button, the integrator can be restarted any time. When clicked, the
button sets a flag ('Integr1Reset') which causes the script to clear the sum ('Integr1Value'). A
similar feature may also be required for 'real-world signals', for example if the to-be-
integrated sensor value contains a small permanent DC-offset, which (after a sufficiently long
time) would cause the integrator to 'overflow' (or reach the endstop, value off-scale). To avoid
such problems, in practise a 'leaky integrator' is often used instead of an ideal integrator. The
complete example (part of the installation archive) already has an option to make the
integrator 'leaky', by letting the sum decay exponentially with a large time constant.

Related topics (about signal processing) : numeric integrator, moving average filter.

script_demos\ScriptTest1.cvt

© MKT / Dok.-Nr. 85122 Version 2.2 185 / 220

../programs/script_demos/ScriptTest1.cvt
http://en.wikipedia.org/wiki/Leaky_integrator
../help/diagr_01.htm
http://en.wikipedia.org/wiki/Trapezoidal_rule
../help/integrator_demo.png

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

A very basic example, used to test program flow controls (especially select..case), operators,
built-in keywords, etc.

script_demos\ScriptTest2.cvt
A speed test for the script's runtime function. Calculates the value of PI (approx. 3.14159)
using an iteration loop.

Screenshot of the programming tool while running the demo 'ScriptTest2.cvt'.
Click on the image to magnify.

The demo calculates PI using the slow-converging Leibnitz Series, which calls a user-defined
procedure ('Iterate' shown below) for each iteration:

//--------- Procedures and Functions (subroutines) ---------
proc Iterate(int iLoopIndex) // ONE iteration to calculate PI
 // Even loops: ADD, Odd loops: SUBTRACT from sum .
 // Note the BITWISE AND to check the least significant bit:
 if (iLoopIndex & 1) == 0
 // The division must use floats, so use 4.0 not 4,
 // otherwise 4 / (2 * (iLoopIndex + 1) would be calculated
 // with integer values, giving an INTEGER quotient !
 then Sum := Sum + 4.0 / (2 * iLoopIndex + 1);
 else Sum := Sum - 4.0 / (2 * iLoopIndex + 1);
 endif;
endproc; // end Iterate()

script_demos\ScriptTest3.cvt
A slightly more advanced test application. Used during development to test arrays, type
definitions, scrollable text, and CAN-bus functions.

script_demos\DisplayTest.cvt
Test application to control some display elements via script, like display.menu_mode,
display.menu_index. Also calls a very simplistic user-defined procedure ("GoToNextField")

© MKT / Dok.-Nr. 85122 Version 2.2 186 / 220

../programs/script_demos/DisplayTest.cvt
../programs/script_demos/ScriptTest3.cvt
http://en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
../programs/script_demos/ScriptTest2.cvt
../help/ScriptDemo_Calculate_PI.png

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

from a graphic button:
//---
proc GoToNextField // Called from the display (on button)
 display.menu_mode := mmNavigate; // switch to "select"
(navigate) mode
 display.menu_index := (display.menu_index+1) % 8; // switch
to next field
endproc; // end GoToNextField

script_demos\TimerEvents.cvt
Test and demo for Timer-Events. This script uses an array of timers, programmed with
different cycle times:

 const // define a few constants...
 C_NUM_TIMERS = 10; // number of simultaneously running timers
 int ResistorColours[10] = // ten 'colour codes' [0..9]:
 { clBlack, clBrown, clRed, clOrange, clYellow, // [0..4]
 clGreen, clBlue, clMagenta, clDkGray, clLtGray // [5..9]
 };
 endconst;
 ...
 typedef
 tMyTimerControl = struct
 int iEventCount;
 float fltMeasuredFrequency;
 endstruct;
 endtypedef;
 ...
 var // declare a few GLOBAL variables...
 tTimer MyTimer[C_NUM_TIMERS]; // an ARRAY of timers for the stress-
test
 tMyTimerControl MyTimerCtrl[C_NUM_TIMERS]; // an array of self-defined
'timer controls'
 endvar;
 ...
 // Start the timers for the timer 'stress test'
 for i:=0 to #(C_NUM_TIMERS-1)
 MyTimer[i].user := i; // use the index as 'user defined ID' for this
timer
 setTimer(addr(MyTimer[i]), 37+20*i/*ms*/, addr(OnMyTimer));
 next i;
 ...
 //--
 func OnMyTimer(tTimer ptr pMyTimer) // another TIMER EVENT HANDLER...
 // Shared by timers which run at different intervals.
 // The activity of each of these timers is visualized
 // as a horizontal coloured bar on a text panel .
 local int i,x,y;
 local tMyTimerControl ptr pCtrl;
 debugTimer := pMyTimer[0]; // copy the argument into a global variable
(for debugging/"Watch")
 TimerEventCount := TimerEventCount + 1; // global counter for ALL
timer events

© MKT / Dok.-Nr. 85122 Version 2.2 187 / 220

../help/arrays
../programs/script_demos/TimerEvents.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 i := pMyTimer.user; // user defined index of this timer, here:
i = 0..9
 pCtrl := addr(MyTimerCtrl[i]); // address of a user-defined 'timer
control' struct
 x := pCtrl.iEventCount % tscreen.vis_width;
 y := i;
 tscreen.cell[y][x].bg_color := ResistorColours[i];
 tscreen.cell[y][x+1].bg_color := clWhite;
 tscreen.modified := TRUE;
 pCtrl.iEventCount := pCtrl.iEventCount + 1; // count the events fired
by THIS timer
 // ...
 return TRUE; // TRUE = 'the event has been handled here' (FALSE would
not fire more events)
 endfunc; // OnMyTimer()

On each timer event, a counter for that timer is incremented, and the counter value is
displayed as a horizontal colour bar on a Text-Panel :

(Screenshot from the 'Timer Event' test application)
The upper bar shows the 'fastest running' timer (index 0, colour code black), the lower bar
shows the slowest timer (here: index 8, colour code gray).

To measure the timing jitter, an additional timer event is used, which cyclically transmits a
CAN message:

 //--
 func OnCANtxTimer(tTimer ptr pMyTimer) // a TIMER EVENT HANDLER...
 local tCANmsg msg; // use LOCAL variables (not globals) in event
handlers !
 msg.id := 0x335; // set CAN message identifier for transmission
 msg.len:= 8; // set CAN data length code (max. 8 bytes = 2
doublewords)
 msg.dw[0] := 0x11223344; // set four bytes in a single doubleword-move
(faster than 4 bytes)
 msg.dw[1] := 0x55667788; // set the last four bytes in the 8-byte CAN
data field
 can_transmit(msg); // send the CAN message to the bus

© MKT / Dok.-Nr. 85122 Version 2.2 188 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 return TRUE; // TRUE = 'the event has been handled here' (FALSE would
not fire more events)
 endfunc;

The timer for this event handler is started in the initialisation part of the script as follows:

 // Start another timer for periodic CAN transmission .
 // Jitter can be checked with a CAN bus analyser.
 setTimer(CANtxTimer, 100/*ms*/, addr(OnCANtxTimer)); // OnCANtxTimer
called every 100 ms

When tested on an MKT-View III, a jitter of approximately +/- 5 milliseconds could be
observed with a CAN bus tester. Most of this jitter is caused by the cooperative, not
preemptive, multitasking within the script language. The jitter may be reduced in future
versions of the device firmware (2013-06-05).

script_demos\FileTest.cvt
Test- and demo application for the file I/O functions. Different tests can be started by the
graphic buttons on the first display page:
 'Test RAMDISK' writes and reads a file on the device's RAMDISK,
 'Test Memory Card' uses the memory card for the same test.
The function 'Test File Access' (written in the script language) is used for both storage media.
Here is a shortened version of it:

//---
func TestFileAccess(string pfs_path)
 // Part of the test program for file I/O functions . Taken from
'FileTest.cvt' .
 // [in] pfs_path : path for the pseudo-file-system like "ramdisk" or
"memory_card"
 local int fh; // file handle
 local int i;
 local string fname;
 local string temp;

 // Build a complete filename, with a path:
 fname := pfs_path+"/test.txt";

 // First try to OPEN the file (but don't try to CREATE, i.e. OVERWRITE
it):
 fh := file.open(fname,O_RDWR); // try to open existing file, read- AND
write access
 if(fh>0) then
 file.seek(fh, 0, SEEK_END); // Set file pointer to the END of the file
 // write a separator between the 'old' and the 'new' part of the file:
 file.write(fh,"\r\n---- data appended to file ----\r\n");
 else // file.open failed, so try to CREATE a 'new' file:
 fh := file.create(pfs_path+"/test.txt",4096); // create a file, with
pre-allocation

© MKT / Dok.-Nr. 85122 Version 2.2 189 / 220

../programs/script_demos/FileTest.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 endif;
 if(fh>0) then // successfully opened or created the file ?
 file.write(fh,"First line in the test file.\r\n");
 file.write(fh,"Second line in the test file.\r\n");
 file.write(fh,"Third line in the test file.\r\n");
 file.close(fh);
 else // neither file.open nor file.create were successful:
 print("\r\nCould not open or create a file !");
 return FALSE;
 endif;

 // After writing and closing the file (above), open it again, and READ
the contents:
 fh := file.open(pfs_path+"/test.txt", O_RDONLY | O_TEXT); // try to open
the file for READING
 if(fh>0) then // successfully created the file ?
 print("\r\nRead from file on '",pfs_path,"' :");
 while(! file.eof(fh)) // repeat until the end of the file.......
 temp := file.read_line(fh); // read one line of text from the file
 print("\r\n ", temp); // dump that line to the text panel
 Progress := Progress+1;
 endwhile;
 print("\r\nReached the END-OF-FILE marker.");
 file.close(fh);
 else
 print("\r\nCould not open file for reading !");
 return FALSE;
 endif;
 return TRUE;
endfunc; // TestFileAccess

With some additional output from the 'print' command, and pressing the 'Test RAMDISK'
button, the program produced the following output on a text panel:

© MKT / Dok.-Nr. 85122 Version 2.2 190 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Other examples using the file I/O functions: VT100/VT52 emulator, reading (parsing) of INI
files .

script_demos\IniFiles.cvt
This demo for advanced users reads a 'configuration file' (similar to windows 'INI' files), line
by line.
The values read from the file are stored in script variables, which can be displayed on a
scrolling text panel:

Screenshot from the 'INI-file' demo (programs/script_demos/IniFiles.cvt)

The application uses the 'file.read' function as INI file parser. For details, see file.read.
The test file IniDemo1.ini is contained in the installation archive.

© MKT / Dok.-Nr. 85122 Version 2.2 191 / 220

../sim_mc/IniDemo1.ini
../programs/script_demos/IniFiles.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

To run the demo in the simulator (programming tool), the INI file is read from the folder
which 'emulates' the memory card (an memory card reader is not required).
To test the demo on a 'real' target hardware, copy the sample file (IniDemo1.ini) from folder
'sim_mc' ("simulated memory card") into the root directory of a suitable memory card (with
FAT or FAT32 file system without "long filenames").

script_demos\TScreenTest.cvt
Test application for the text-screen buffer, with procedures to draw lines and frames in the
text-mode screen buffer ("tscreen") .
This file was also used as a first test for local variables, parameter passing in procedures, and
recursive calls during development .

//--
proc FillScreen1(string sFillChar)
 // PROCEDURE to fill the screen with a colour test pattern .
 local int X,Y,old_pause_flag;
 old_pause_flag := display.pause;
 display.pause := TRUE; // disable normal screen output
 for Y:=0 to tscreen.ymax
 for X:=0 to tscreen.xmax
 gotoxy(X,Y);
 setcolor(clWhite,
 rgb((11*(X+Y))&255, (9*(Y-X))&255, (3*X)&255));
 print(sFillChar); // print a single character
 next X;
 next Y;
 display.pause:=old_pause_flag; // resume display output ?
endproc; // end FillScreen1()

Furthermore, TScreenTest .cvt demonstrates how special DOS characters (from "codepage
437" or "codepage 850") can be used to draw lines, boxes, and grids on a text screen. This
demo also contains a very simple 'video game' which polls the keyboard to steer a worm (or
snake) through a maze. A similar principle can be used in your application to realize advanced
animated graphics, using the special "graphic" characters from a DOS compatible font like the
one shown below:

© MKT / Dok.-Nr. 85122 Version 2.2 192 / 220

../programs/script_demos/TScreenTest.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

One of the built-in fonts with 'graphic characters' (DOS codepage 437)

script_demos\LoopTest.cvt
Demonstrates various loop commands, like for-to-next . Contains a simple 'animated' colour
text demo using loops, gotoxy, color, rgb, the print command, and the display.pause flag to
prevent the display from being updated at the 'wrong' time (here to avoid flicker while filling
the text-screen buffer with new characters) .

script_demos\TimeTest.cvt
Test application for the time-conversion functions like time.date_to_mjd and
time.mjd_to_date .
Also shows how to split a 'Unix Time' into years, months, days, hours, minutes, and seconds.

script_demos\StringTest.cvt
Test application for string functions like strlen(), strpos(), substr(), etc.

script_demos\StructArrayTest.cvt
Test application for an array of user-defined structures, with each struct containing integers,
floating point values, and strings .
The array-filling loop also served as a simple benchmark during development in October
2010 .

script_demos\PageMenu.cvt
This demo application builds a menu showing all the existing display pages (in the
application) in a menu, and allows jumping to the selected page (in the menu).

© MKT / Dok.-Nr. 85122 Version 2.2 193 / 220

../programs/script_demos/PageMenu.cvt
../programs/script_demos/StructArrayTest.cvt
../programs/script_demos/StringTest.cvt
../programs/script_demos/TimeTest.cvt
../programs/script_demos/LoopTest.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

script_demos\EventTest.cvt
Test / demo for low-level events ("system events" like OnEncoderDelta()), and events fired
by graphic control elements like buttons, panels, text fields, etc.
First we define a few symbolic identifiers in the script, to identify individual elements (here:
graphic buttons) in the script and in the display page definition:

const
 // Identifiers for certain DISPLAY ELEMENTS with event handling per
script.
 // These IDs are passed as 2nd parameter to the OnControlEvent() handler.
 // Note that the maximum length for these IDs (in the page definition
 // table) is limited to 11 (ELEVEN) characters. Control-ID ZERO is
invalid.
 idButton1 = 1; // first button
 idButton2 = 2; // second button, etc..
 idButton3 = 3;
endconst;

The identifiers defined that way (for example idButton1) should be copied into the definition
of the display elements, on the tabsheet 'Page N', panel 'Properties of a display line' /
'Eigenschaften einer Anzeigezeile', in the 'Control ID' field as in the screenshot below. This
value will be passed to the event handler OnControlEvent (int event, int controlID, int
param1, int param2) as parameter 'controlID'.
When pressing or releasing a button, the handler not only receives the type of event, but also
the identifier of the control (here idButton1) which fired the event.
This way, one event handler can be used for multiple control elements.
For example, to program an 'electronic organ', we don't need an inidividial handler for each
piano key - one handler for all keys will do, and if we're smart or lazy, we would use the
frequency of the key (in Hertz) as numeric ID value.

Screenshots from 'EventTest.cvt', with definition of a button with Control ID idButton1

The Event-Handler (OnControlEvent) uses select-case statements to tell different 'controls'
(buttons), and different types of events (like evPenDown, evPenMove, evPenUp) from each
other.
Below is the skeleton of an 'OnControlEvent'-Handler, as used in the 'Event-Test' demo:

//--
// Common handler for all 'visible elements which interact with the user'
// on the current display page, aka "Control Elements"
//--

© MKT / Dok.-Nr. 85122 Version 2.2 194 / 220

../programs/script_demos/EventTest.cvt
../help/script_demo_Button_Events_49.png

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

func OnControlEvent(
 int event, // [in] type of the event, like evClick, etc
 int controlID, // [in] control identifier (from page-def-table)
 int param1, // [in] 1st message parameter, depends on event
 int param2) // [in] 2nd message parameter, depends on event
 // Called when 'something happens' with a certain control element
 // (button, menu item, edit field, etc) on the current display page .
 // param1: client-X-coordinate or keyboard code (depends on event-type)
 // param2: client-Y-coordinate (where applicable)
 local int x,y;
 select(event) // what has happened (type of the event) ?
 case evClick: // button, menu item, etc, was "clicked"...
 select(controlID) // WHICH control element was "clicked" ?
 case idButton1: // Button1 was 'clicked' ...
 // ... add your own code here :
 print("Button 1 clicked.\r\n");

 case idButton2: // Button2 was clicked
 // ... add your own code here ...
 endselect; // end select controlID, for event "click" (via touch
or ENTER key)

 case evPenDown: // the TOUCH-PEN was just pressed on a display
element
 select(controlID) // WHICH control element ?
 case idButton1: // Button1 has just been PRESSED (touch-pen
down)
 // ... add your own code here ...
 case idButton2: // Button2 has just been pressed ->
 display.Wiper := 1; // windscreen wiper on (CAN)
 // ...
 endselect; // end select controlID, for event "touch pen down"

 case evPenMove: // finger or pen MOVED over a control (while
pressed)
 x := param1; // client X coord
 y := param2; // client Y coord
 select(controlID) // WHICH control element ?
 case idButton1: // finger or pen was moved while pressed on
Button1
 // ... add your own code here ...
 endselect; // end select controlID, for event "touch pen down"

 case evPenUp: // the TOUCH-PEN was released over a display
element
 x := param1; // client X coord
 y := param2; // client Y coord
 select(controlID) // WHICH control element ?
 case idButton1: // Button1 has just been released (finger or
pen "up")
 // ... add your own code here ...
 case idButton2: // Button2 has just been released ->
 display.Wiper := 0; // windscreen wiper off (CAN)
 // ...
 endselect; // end select controlID, for event "touch pen released"
(just up again)
 endselect; // end select (event)

© MKT / Dok.-Nr. 85122 Version 2.2 195 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 return 0; // 0: let the system process this event, too
endfunc; // OnControlEvent

Note: The self-defined identifier idButton1 is just an example.
In your own applications, you should use 'speaking names' wherever possible, e.g.
idStart, idStop, idGearbox, idHorn, idWiper, ...

script_demos\ButtonEventDemo.cvt
This is another (small) demo with an event handler for button events; it also shows how to
transmit CAN messages controlled by graphic buttons (without a DBC file).
When a button is pressed, a button-specific signal is set, and a message (which contains that
signal) is sent via CAN.
When releasing the button again, the signal is cleared, and an updated message is sent via
CAN.

Screenshot from the 'Button-Event' demo (programs/script_demos/ButtonEventDemo.cvt)

To show the current values of all "CAN signals" close to the buttons which control them, the
user-defined function 'GetSignalByIndex' is called when updating the UPT display page. The
parameter 'index' for the array 'CanSignals[index]' is passed as a function argument (here, 0..6
for simplicity).
The reaction on pressing or releasing any of the seven (?) buttons is implemented in
OnControlEvent. As already explained in the previous example, this event handler (if it exists
in the script) is called when anything (user action) happens with any control element. Each
button has its individual identifier ('control-ID', e.g. idButton1), which -in the following
example- is used to calculate an index to access the CAN-signal which is 'connected' to a
particular button (CanSignals[0]...CanSignals[6], note the zero-based array indices):

const
 // Identifiers for certain DISPLAY ELEMENTS with event handling per
script.
 // These IDs are passed as 2nd parameter to the OnControlEvent() handler.
 // Note that the maximum length for these IDs (in the page definition
 // table) is limited to 11 (ELEVEN) characters. Control-ID ZERO is
invalid.
 idButton1 = 1; // first button

© MKT / Dok.-Nr. 85122 Version 2.2 196 / 220

../programs/script_demos/ButtonEventDemo.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 idButton2 = 2; // second button, etc..
 idButton3 = 3;
 idButton4 = 4;
 idButton5 = 5;
 idButton6 = 6;
 idButton7 = 7;
 // (Calling the buttons "Button1" .. "Button7" etc is a no-brainer;
 // but it emphasizes that these buttons may be used for "anything")
endconst;

The above symbolic identifiers are assigned to control elements (here: buttons) as already
explained in the 'Event Test' example. Instead of brainless names like 'idButton1'..'idButton7',
in a real-world application you should use 'talking' names like idStart, idStop, idUp, idDown,
idLeft, idRight, etc.
By subtracting the constant 'idButton1' from the button's control-ID, a zero-based array index
is calculated, which is then used to access an array of 'CAN-Signals'.
Thus a single event handler is enough to process user input from all buttons (and similar
control elements, if necessary):

//---

func OnControlEvent(
 int event, // [in] type of the event, like evClick, etc
 int controlID, // [in] control identifier (from page-def-table)
 int param1, // [in] 1st message parameter, depends on event
 int param2) // [in] 2nd message parameter, depends on event
 // Called when 'something happens' with a certain control element
 // (button, menu item, edit field, etc) on the current display page .
 // param1: client-X-coordinate or keyboard code (depends on event-type)
 // param2: client-Y-coordinate (where applicable) .
 local int i;
 select(event)
 case evPenDown: // the TOUCH-PEN was just pressed over a display
element
 select(controlID) // on WHICH control element was the touch pen
pressed down ?
 case idButton1: // 1st button PRESSED, or...
 case idButton2: // 2nd button PRESSED, or...
 case idButton3:
 case idButton4:
 case idButton5:
 case idButton6:
 case idButton7:
 // To keep it simple, we treat all these buttons the same
way.
 // Turn the buttons 'control ID' into a zero-based array
index:
 i := controlID - idButton1;
 CanSignals[i] = 1;
 SendCanSignals();
 endselect; // controlID (for event 'PenDown')

 case evPenUp: // the TOUCH-PEN was released from a display element

© MKT / Dok.-Nr. 85122 Version 2.2 197 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 select(controlID) // from WHICH control element was the touch
pen lifted up ?
 case idButton1: // 1st button RELEASED, or...
 case idButton2: // 2nd button RELEASED, or...
 case idButton3:
 case idButton4:
 case idButton5:
 case idButton6:
 case idButton7:
 // To keep it simple, we treat all these buttons the same
way.
 // Turn the buttons 'control ID' into a zero-based array
index:
 i := controlID - idButton1;
 CanSignals[i] = 0;
 SendCanSignals();
 endselect; // controlID (for event 'PenUp')

 endselect; // end select (event)
 return 0; // 0: let the system process this event, too
endfunc; // OnControlEvent

To transmit the modified signals (via CAN), the event handler calls the user-defined
procedure 'SendCanSignals'. This procedure 'maps' all signals which may have been modified
via buttons into a single CAN message, which is then sent to the CAN bus network via
can_transmit :

//---

proc SendCanSignals // Called from the event handler (OnControlEvent)
 // to send the current 'signals' via CAN .
 local tCANmsg msg; // use LOCAL variables (not globals) in event handlers
!
 msg.id := 0x335; // set CAN message identifier for transmission
 msg.len:= 8; // set CAN data length code (max. 8 bytes)
 // Map our 'CAN-Signals' into a CAN message.
 // To keep this demo simple, each signal occupies EIGHT BITS in the CAN
frame.
 msg.bitfield[0,8] = CanSignals[0];
 msg.bitfield[8,8] = CanSignals[1];
 msg.bitfield[16,8] = CanSignals[2];
 msg.bitfield[24,8] = CanSignals[3];
 msg.bitfield[32,8] = CanSignals[4];
 msg.bitfield[40,8] = CanSignals[5];
 msg.bitfield[48,8] = CanSignals[6];
 can_transmit(msg); // send message to the CAN network
endproc; // SendCanSignals()

script_demos\quadblox.cvt
Test application for two-dimensional array variables and two-dimensional array
constants . Also shows how to poll the keyboard, or events fired by programmable buttons on
a certain display page. This demo is actually a simplified implementation of a once-famous

© MKT / Dok.-Nr. 85122 Version 2.2 198 / 220

../programs/script_demos/script_demos/quadblox.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

"puzzle game with falling blocks", which we don't call by its original name to avoid copyright
hassle. The cursor keys may be emulated with the graphic buttons (for devices with
touchscreen) on the right side of the screen shown below.

Screenshot from programs/script_demos/quadblox.cvt

The "QuadBlocks"-demo was designed for a 320*240 pixel screen, but it can automatically
resize itself for displays with 480*272 pixels using the functions tscreen.vis_width and
tscreen.vis_height . For devices with 240*320 pixels (aka "portrait mode" screen), the script
switches to a different display page than the for "landscape" mode, by checking the horizontal
screen resolution (display.pixels_x, which may be 128, 240, 320, or 480 pixels, depending on
the target hardware).

script_demos\MacPan.cvt : Demo application for directly painting into the framebuffer
In this mock-up of a 1980-style Arcade game (with a slightly different name), parts of the
display are painted 'dynamically' into the framebuffer, using the the OnPageUpdate() handler
to define the Z-order ("background", "foreground", and anything in between). In the
OnPageUpdate handler, parameter iElement controls the Z-order of the player sprite, and a
couple of 'ghosts' walking through the maze.
The 'maze' (here: the first display element, iElement = 0, using a text panel) is painted first
(not in the OnPageUpdate handler but by the display interpreter, because it's a normal display
element); the 'ghost'-sprites are rendered next (by the OnPageUpdate handler because they are
no 'normal' display elements). The player sprite is painted last (in OnPageUpdate with
iElement=255) to let it appear in the foreground, regardless of the number of 'normal' display
elements actually present on the page.

Note: Rendering graphic objects directly into the framebuffer as described above is the fastest
way for small, rapidly moving objects. For anything else (non-moving, or infrequently
modified large objects) it's more efficient to paint them into an extra tCanvas-object first, and
let the display-interpreter decide when to render the 'Canvas' into the framebuffer.
For overlapped, animated graphics, set option "Always redraw this page completely" in the
page definition header.

script_demos\TrafficLight.cvt
Simple 'traffic light controller'. Demonstates the use of the onboard digital I/O lines (which
only exist in a few devices).

© MKT / Dok.-Nr. 85122 Version 2.2 199 / 220

../programs/script_demos/TrafficLight.cvt
../help/progt_01.htm#page_def_header
../help/tCanvas
../programs/script_demos/MacPan.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Screenshot from programs/script_demos/TrafficLight.cvt

Pedestrians can request 'green' by pushing a button, connected to the first digital input.
Alternatively, a graphic button on the touchscreen can be used for this.
Three digital outputs are used for the 'cars' (red, yellow, green), two digital outputs for the
pedestrians (red alias "don't walk", green alias "walk").
The traffic light states are also displayed on the screen, using bitmaps which change their
colours depending on the current states of the digital outputs.
It also shows how to change the colour of a certain display element (on the current display
page) through the script, using display.elem .

script_demos\ErrFrame.cvt
Specialized CAN test, allows to send (!) and receive (count) error frames. On each received
CAN error frame, this application produces an acoustic signal - which may be a helpful
testing utility. Ideally, error frames do not occurr on a CAN (Controller Area Network) - but
in practise, they do happen. Some poorly designed devices used to send a dominant bit
sequence (six or more dominant bits) during startup. This utility helps to spot such errors. It
can also be used to 'probe' a network: Send an error frame into the CAN, and (if there's
"someone else" on the bus), you will receive one error frame in response. Otherwise, you
know this CAN-bus is "dead".
The length of the error frame (in microseconds) can be modified in the edit field labelled
'Pulse Time'. The default, 12 microseconds, will only give an error frame if the CAN bus runs
at 1000 or 500 kBit/second. To cause an error frame for lower bitrates, increase the number of
microseconds.

© MKT / Dok.-Nr. 85122 Version 2.2 200 / 220

../programs/script_demos/ErrFrame.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Screenshots from the 'CAN Error-Frame-Tester', programs/script_demos/ErrFrame.cvt

To put the CAN network under 'sufficient stress', this application can also transmit normal
CAN messages to the bus.
The format is:

 CAN message ID (hex), number of data bytes (0..8), and up to 8 bytes (also hexadecimal).

Transmission can be initiated manually (button 'Send CAN message' in the 1st screenshot
above) or periodically, using a timer event with an adjustable interval (see 3rd screenshot
above).

script_demos\SerialPt.cvt ; script_demos\GpsRcv01.cvt ; script_demos\GpsSim01.cvt
Various tests for the serial ports, most of them for the MKT-View II (which, unlike most
other devices, has two serial ports). The application 'GpsSim01.cvt' was used to simulate a
GPS receiver by reading lines from an NMEA log file from a text file (line by line), and
sending them through the serial port. The application 'GpsRcv01.cvt' is more or less the
counterpart: It was used on a second MKT-View II (both connected through a modified "Null-
Modem" cable) to display the received NMEA strings on a text panel.
Note: The serial port is accessed through the file I/O functions, so these demos only work if
the extended script functions are unlocked !

© MKT / Dok.-Nr. 85122 Version 2.2 201 / 220

../programs/script_demos/GpsSim01.cvt
../programs/script_demos/GpsRcv01.cvt
../programs/script_demos/SerialPt.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 -------- ("Null-Modem") -------->

Signal flow for the serial port test

To access the serial port from the script language, use the device names "serial1" (= the first
serial port) or "serial2" (= the 2nd serial port, in the MKT-View II this port is decicated for
the GPS receiver). Here is a sourcecode snippet from the 'GPS receiver' demo
(GpsRcv01.CVT) :

// Try to open the second serial port "like a file" .
// In the MKT-VIEW II, device "serial2" is the GPS port.
// Note: Do NOT modify the serial port's baudrate here.
// The system has already set it, according to the
// 'System Setup' / 'GPS Rcv Type' (4k8, 9k6, ...).
hSerial := file.open("serial2");
if(hSerial>0) then // successfully opened the GPS port
 display.PortInfo := "Port2";
else // Could not open the 2nd serial port !
 // This happens on a PC (which has no dedicated GPS
port).
 // Try the FIRST serial port instead, with a fixed
baudrate:
 hSerial := file.open("serial1/9600");
 display.PortInfo := "Port1";
endif;
if(hSerial<=0) then // could not open the serial port ?
 print("\r\nCouldn't open the serial port !");
 stop;
endif;

print("Reading from device \"",file.name(hSerial),"\"..\r\
n");
while(1) // endless loop to read and process received data...
 // Read the next bytes from the serial port
 // (not necessarily a complete LINE) :
 temp := file.read_line(hSerial);

© MKT / Dok.-Nr. 85122 Version 2.2 202 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 if(temp != "") then // something received ?
 // Dump the received character(s) to the text panel..
 if(tscreen.cy >= tscreen.vis_height) then
 gotoxy(0,1); // wrap around
 endif;
 print(" ", temp);
 clreol;
 print("\r\n");
 clreol; // clear the next line (to show last entry)
 else // nothing received now ..
 wait_ms(50); // .. let the display program work
 endif;
endwhile;

The script in the 'Serial Port Test' application (programs\script_demos\SerialPt.CVT) also
uses the file-I/O API to open both serial ports (which is possible in the MKT-View II), and
reads anything received from both ports line-by-line. In this case, the script tries to open both
serial ports with the same, fixed bitrate:

// Try to open the second serial ports "like files" .
// In the MKT-VIEW II, device "serial2" is the GPS port.
// To open the serial port with a fixed baudrate,
// append it after the device name as below .
hSerial1 := file.open("serial1/9600"); // open 1st serial port

hSerial2 := file.open("serial2/9600"); // open 2nd serial port

The received strings are dumped to a text panel. The LCD may look like this:

Screenshot 'Serial Port Demo' (programs/script_demos/SerialPt.cvt)

See also (about serial ports): Selection/configuration of the serial port in the programming
tool.

script_demos\InetDemo.cvt

© MKT / Dok.-Nr. 85122 Version 2.2 203 / 220

../programs/script_demos/InetDemo.cvt
../help/sercmd_01.htm#configure
../help/sercmd_01.htm#configure
../programs/script_demos/SerialPt.CVT

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Test, demo, and an example application for the Internet functions (TCP and UDP) in the
script language.
Also runs in the simulator, integrated in the programming tool, if you allow the program to
'act as a server' in the windows security center / personal firewall.

Screenshot 'UDP Test' (from programs/script_demos/InetDemo.cvt)

To run the 'internet demo' on a PC, make sure the firewall won't block the necessary
functions. The three buttons in the upper right corner of the display (see screenshot above)
select the mode of operation:
 'Server' lets the script run as a simple TCP-server;
 'Client' lets the script run as a simple TCP-client;
 'UDP' starts a combined test for UDP transmission and reception.
In the 'Client'- and 'UDP' test, keys pressed on the display are sent to the remote end, using
simple text strings.
Transmitted messages are shown in green colour.
Received messages are painted blue.
If 'something goes wrong', the script shows an error message in red colour on the scrollable
text panel.

In the screenshot shown above, the error message 'Connection reset by peer' was deliberately
caused because the remote end had not opened the specified port yet. In such cases (IP
address valid but port not open), the MKT-View sends back an error response (ICMP which
Wireshark decodes as 'destination unreachable / port unreachable), which the Winsock
network layer passes on to the application as one of the 'socket' error codes shown in chapter
4.
Note:

Even though UDP is a connection-less protocol, Winsock returns error codes like
'Connection Refused' or 'Connection reset by peer' !
In the screenshot shown above, the error message 'Connection reset by peer' actually
was caused by the remote end ('peer') which had not opened the UDP port yet, and thus
correctly responded with an ICMP error message, which Wireshark decoded as follows:

No. Time Source Destination Prot. Len Info

© MKT / Dok.-Nr. 85122 Version 2.2 204 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

26 11.561528 192.168.0.234 192.168.0.206 UDP 50 Src port: 49155 Dst
port: 49155

27 11.561904 MktSyste_12 Broadcast ARP 60 Who has 192.168.0.234
? Tell 192.168.0.206

28 11.561927 192.168.0.206 MktSyste_12 ARP 42 192.168.0.234 is at
74:27:ea:e2:84:d8

29 11.564618 192.168.0.206 192.168.0.234 ICMP 71 Destination
unreachable (Port unreachable)

Because the (ICMP-) error message arrived several milliseconds after trying to send the
UDP message to the (non-existing) port,
the script could not notice that the attempted 'inet.send' had failed (again, because UDP
is a connection-less protocol).

See also: Internet / Ethernet-related troubleshooting

script_demos\MultiLanguageTest.cvt
This application started as a test program for various script language extensions. It uses the
file I/O functions to read textfiles stored in any of the device's FLASH memory files (using
the UPT's pseudo-file system), and a user-defined function ("GetText") which is called from
the display in a backslash sequence to retrieve a text (string) in one of many selectable
languages.
It also shows how to invoke script procedures from display interpreter commandlines.

script_demos\OperatorTest.cvt
This application contains a test script for some 'advanced' operations. It was used during
software development to check various operators (mostly the assignment operator) and other
new functions.

script_demos\ReactionTest.cvt
This application implements a simple 'reaction time test' for a human operator. The script first
waits for a random time (between 0.5 and 5 seconds), then changes the display colour, and
measures the time until the operator hits any key, or hits the touchscreen surface, or
turns/rotates the rotary encoder knob.
Depending on your reaction speed, the program suggests how to proceed:

Screenshot 'Reaktion Test' (programs/script_demos/ReactionTest.cvt)

© MKT / Dok.-Nr. 85122 Version 2.2 205 / 220

../programs/script_demos/ReactionTest.cvt
../programs/script_demos/OperatorTest.cvt
../programs/script_demos/MultiLanguageTest.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

script_demos\TraceTest.cvt
This application contains a short script to test the Trace-Historie, using the Commands to
control the Trace History from chapter 3.10 .
This includes ("but it not limited to"):

• Appending own messages via script to the trace history (trace.print)
• Automatically stopping the trace history via script
• Excluding certain CAN messages from the trace history (trace.can_blacklist)
• Showing the contents of the trace history on a text panel (trace.entry[n])
• Clearing the trace history by the operator (via graphic button / touchscreen)
• Saving the trace history as a text file on the device's memory card

script_demos\CANopen1.upt
Only for the 'UPT Programming Tool II' and for devices with integrated CANopen protocol
stack.

Screenshot from the 'CANopen Test' (programs/script_demos/CANopen1.upt)

The graphic buttons 'Local OD', 'Remote OD', and 'PDO-Map' above the text panel launch
different subroutines in the script. The scrollers on the right side and below the text panel can
be operated via touchscreen to scroll the visible part of the larger 'virtual text screen' vertically
and horizontally.
Here is a slightly shortened variant the sourcecode of the 'PDO-Mapping Test', which
reprograms the mapping of the first transmit-PDO:

//--
proc TestPdoMapping // demo to 'reprogram' this device's own PDO mapping
 // 'Reprogram' a CANopen slave's PDO mapping table...
 // How to do it CORRECTLY (quoted from CiA 301, V4.2.0, page 142..143):
 // > The following procedure shall be used for re-mapping,
 // > which may take place during the NMT state Pre-operational
 // > and during the NMT state Operational, if supported:
 // > 1. Destroy TPDO by setting bit valid to 1b of sub-index 01h
 // > of the according TPDO communication parameter.
 // > 2. Disable mapping by setting sub-index 00h to 00h.

© MKT / Dok.-Nr. 85122 Version 2.2 206 / 220

../programs/script_demos/CANopen1.upt
../programs/script_demos/TraceTest.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 // > 3. Modify mapping by changing the values of the corresponding sub-
indices.
 // > 4. Enable mapping by setting sub-index 00h to the number mapped
objects.
 // > 5. Create TPDO by setting bit valid to 0b of sub-index 01h
 // > of the according TPDO communication parameter.
 local dword dwCommParValue; // 32-bit unsigned integer

 cop.error_code := 0; // Clear old 'first' error code (aka SDO abort code)
.
 // If the following CANopen commands work as planned, cop.error_code
remains zero.
 // If something goes wrong, cop.error_code could tell us what, and why
it went wrong.
 // In the original script (in script_demos/CANopen1.upt), it is checked
after each obd-access.
 dwCommParValue := cop.obd(0x1800,0x01); // save original value of PDO
comm par
 cop.obd(0x1800,0x01) := dwCommParValue | 0x80000000; // make 1st TPDO
invalid by setting bit 31
 cop.obd(0x1A00,0x00) := 0x00; // clear TPDO1 mapping table (CiA:
"Disable mapping"..)
 cop.obd(0x1A00,0x01) := 0x40050108; // 1st mapping entry: map object
0x4005, subindex 1, 8 bits
 cop.obd(0x1A00,0x02) := 0x50010108; // 2nd mapping entry: map object
0x5001, subindex 1, 8 bits
 cop.obd(0x1A00,0x03) := 0x51050108; // 3rd mapping entry: map object
0x5105, subindex 1, 8 bits
 cop.obd(0x1A00,0x00) := 0x03; // enable mapping by setting the
number of mapped objects
 cop.obd(0x1800,0x01) := dwCommParValue & 0x7FFFFFFF; // make 1st TPDO
valid; clear bit 31

 print("\r\nNew PDO mapping table:\r\n");
 ShowPdoMap(cTPDO, 1/*PdoNumber*/); // show the new PDO mapping table
(see CANopen1.upt)
endproc; // TestPdoMapping()

script_demos\J1939sim.cvt
The script in this example simulates an ECU (electronic control unit) from which a few
parameters can be read via J1939 protocoll.
A similar script is available for ISO 15765-2 ("ISO-TP").

script_demos\ISO15765sim.cvt
The script in this example tries to simulate an ECU (electronic control unit) with ISO 15765-2
support, aka "ISO-TP".
It uses the Aliases for ISO-TP in 29-bit CAN message identifiers (e.g. tCANmsg.ISO_TA,
tCANmsg.ISO_TA).
By the time of this writing (2015-05-19), probably not functional, due to the lack of a suitable
'test environment' (ECU with ISO 15765).
A similar script is available for J1939.

© MKT / Dok.-Nr. 85122 Version 2.2 207 / 220

../programs/script_demos/ISO15765sim.cvt
../programs/script_demos/J1939sim.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

script_demos\BusSleepMode.cvt
This example detects a 'sleeping' CAN bus, simply by *not* receiving anything within several
seconds.
Principle: In a timer event handler, the script compares the recent value of CAN.rx_counter()
with the previous reading.
An MKT-View (II,III,IV) could even turn itself off in that case. In this demo, that happens
after 60 seconds without activity.

Screenshot from sample application 'Bus Sleep Mode',
after 45 seconds without activity on the CAN bus

Fragments from the script in BusSleepMode.cvt :

var
 int iPrevCanRxCount; // CAN-message-counter-reading from the
previous second
 int iCanMsgsPerSecond; // current CAN message rate (messages per
second)
 int iTimeOfNoActivity; // number of seconds without activity /
shutdown-timer
 int MayShutDown; // flag controlled by a graphic button
 string Info;
 tTimer Timer1;
endvar;

 ...

setTimer(Timer1, 1000, addr(OnTimer1)); // Start timer with event
handler, called every 1000 ms
init_done; // let the system know "we're open for business" (enable event
handlers)

while(1) // endless loop for the script's MAIN THREAD
 if (iTimeOfNoActivity>60) and MayShutDown then // no bus activity for
over 60 seconds ?
 system.shutdown; // turn this device off
 endif;
 wait_ms(50); // give the CPU to someone else for 50 milliseconds
endwhile; // main thread

© MKT / Dok.-Nr. 85122 Version 2.2 208 / 220

../help/btns_01.htm#check_buttons
../programs/script_demos/BusSleepMode.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

func OnTimer1(tTimer ptr pMyTimer) // periodically called, once per
second
 local int iNewCanRxCount;
 iNewCanRxCount := CAN.rx_counter(cPortCAN1);
 iCanMsgsPerSecond := iNewCanRxCount - iPrevCanRxCount;
 if(iPrevCanRxCount == iNewCanRxCount) then
 // Arrived here: No bus activity !
 iTimeOfNoActivity := iTimeOfNoActivity + 1;
 Info := "CAN bus seems to 'sleep'.";
 else
 iTimeOfNoActivity := 0;
 Info := "CAN bus is active.";
 endif;
 iPrevCanRxCount := iNewCanRxCount;
 return TRUE;
endfunc; // end OnTimer1

script_demos\VT100Emu.cvt
This example emulates a VT100- or VT52-Terminal, using the simulated 'text screen' (text
panel).
Works with CAN (up to 8 characters per CAN message) and the serial port (RS-232).
An overview of the most important VT100- and VT52-Escape-Sequences can be found on the
"MKT-CD" (available 'online'), in Document Nr. 85141, VT100/VT52-Emulation für MKT-
Geräte (so far only available in german language, but the Escape sequences should be easy to
grasp).

Excerpt from the script in the 'VT100 emulator':

hSerialPort := 0; // use the serial port at all ?
if (iSerialBaud>=300) and (iSerialBaud<=115200) then
 // Try to open the serial port "like a file" .
 hSerialPort := file.open("serial1/"+itoa(iSerialBaud));
endif; // use the SERIAL PORT (RS-232) ?

init_done; // let the system know "we're open for business"

while(TRUE) // main loop .. only interrupted by event handlers and
similar
 wait_ms(50); // give the CPU to whoever-needs-it .

 if(hSerialPort>0) then // successfully opened the serial port (RS-232)
 if(file.read(hSerialPort, sRcvd) > 0) then
 VT100_HandleRcvdString(sRcvd);
 endif;
 endif;

© MKT / Dok.-Nr. 85122 Version 2.2 209 / 220

http://www.mkt-sys.de/MKT-CD/handbuecher/art85141_VT100_Emulation.pdf
http://www.mkt-sys.de/MKT-CD/handbuecher/art85141_VT100_Emulation.pdf
http://www.mkt-sys.de/MKT-CD/
../programs/script_demos/VT100Emu.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

endwhile; // end of 'endless' script loop

The procedure VT100_HandleRcvdString is also implemented in the script. It is not only
called from the main loop (shown in the code snippet above), but also from the CAN receive
handler. Thus, the emulated "VT100 Terminal" can not only be used via serial port ("COM"),
but also as a simple universal text display for the CAN-Bus .
A listing of the complete sourcecode of the VT 100 emulator would be beyond the scope of
this document; you can find it in programs\script_demos\VT100Emu.cvt .

script_demos\popup1.cvt : Custom menu (pop-up, pull-down)
This example shows a custom popup menu (with items filled during run-time), using the
simulated 'text screen' (text panel).
One of the four menus may be opened at a time, using a standard button above each menu:

Selfdefined popup menus (from programs/script_demos/popup1.cvt)

When not 'open', the popup menu (actually a 'text panel') is hidden by clearing the flag
display.elem[<Element-Name>].visible.
To operate the menus via keys, rotary encoder, or touchscreen, the script uses the
OnControlEvent-handler.

script_demos\AppSel_1.cvt : 'Application Selector'
This example scans all *.cvt files (aka "applications") in the root folder of the memory card,
and lists the filenames or (when available) the file descriptions (more on that later). The
operator can select one of these applications via touchscreen to launch it.

© MKT / Dok.-Nr. 85122 Version 2.2 210 / 220

../programs/script_demos/AppSel_1.cvt
../help/btns_01.htm
../programs/script_demos/popup1.cvt
../programs/script_demos/VT100Emu.cvt

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Screenshot of the 'Application-Selector' with a list of all applications stored on the memory
card.

The file displayed in the last line doesn't contain a description, thus the filename is shown
instead.

When present, the list shows the file description instead of the filename, because the
description is more informative than the DOS filename with only 8+3 characters. The
operator selects the application which he wants to start via touchscreen or (MKT-View) rotary
knob. In this example, the 'list' is a single-column table with a vertical scroll bar.

By clicking the 'Update' button, the operator can update the directory display. This may be
necessary in the simulator if the content of the memory card simulation folder has been
changed, or (in a 'real' target hardware) the memory card has been exchanged.
The script-controlled colours of this button have the following meaning:
 Yellow

The memory card directory is currently being read.

 Green
The memory card directory has successfully been read, and at least one 'reloadable'
display application has been found.

 Red
The directory could not be read, no memory card inserted, or no suitable file has been
found on the memory card.

As long as no memory card is inserted, or no suitable file (*.cvt) is stored on the card, the
'Update' button keeps flashing yellow/red because a timer (in the script of AppSel_1.cvt) tries
to read the directory again, every 200 milliseconds, until success.

The file description of the listed applications can be modified by the programming tool via
'File' menu, 'Description' :

© MKT / Dok.-Nr. 85122 Version 2.2 211 / 220

../help/table_01.htm#scope

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

Entering an application's 'file description' in the programming tool

Details about the storage of the file description inside UPT- or CVT files can be found here .

The following fragment from AppSel_1.cvt contains a loop to read the directory, and to
extract the file description from all files. All relevant data are stored in an array
('MyFileList[]') of the self-defined type tMyFileInfo (the declaration is not contained in this
fragment).

//---

func ReadDir(string sFileMask)
 // Reads the directory, and stores the result in MyFileList[].
 // For *.cvt and *.upt files, tries to extract the 'file description'.
 // [in] sFileMask : defines which types of files to list, e.g. "*.*"
 // [return] number of entries found (0=none) .
 local int i,handle,n_entries;
 local string sPath;
 local tDirEntry dir_entry; // directory entry structure used by
directory.read()
 local int fh;
 local string sExtension;
 local string sGarbage, sDescription;
 n_entries := 0;

 // Isolate the 'path' from the search mask:
 i := strrpos(sFileMask, "/");
 if(i>0) then
 sPath := substr(sFileMask, 0, i+1);
 else
 sPath := sFileMask;
 endif;

 // Isolate the 'extension' from the search mask:
 i := strrpos(sFileMask, ".");
 if(i>0) then
 sExtension := substr(sFileMask, i+1, 3);
 else
 sExtension := sFileMask;
 endif;

 // open, read, and close the DIRECTORY :
 handle := directory.open(sFileMask);
 if(handle>0) then // successfully opened the directory for reading ?

© MKT / Dok.-Nr. 85122 Version 2.2 212 / 220

../help/progt_01.htm#file_description

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 while(directory.read(handle, &dir_entry)) // repeat for all
matching entries...
 if((dir_entry.attributes & (~cFileAttrArch))==cFileAttrNormal)
 && (n_entries < MyFileList.size(0)) then
 MyFileList[n_entries].sFilename := dir_entry.name;
 MyFileList[n_entries].sDescription := "";
 MyFileList[n_entries].sDate := itoa(dir_entry.year,4) + "-"
 + itoa(dir_entry.month,2)+ "-" +
itoa(dir_entry.mday,2);
 MyFileList[n_entries].sPath := sPath;
 // Look "into" the file. If it's an UPT or CVT application,
 // it may contain a 'file description' which provides
 // more information for the operator than the 8.3 filename.
 if (sExtension=="cvt") or (sExtension=="upt") then
 fh := file.open(sPath + dir_entry.name, O_RDONLY | O_TEXT);
 if(fh>0) then // Successfully opened the file ? Try to
extract its DESCRIPTION !
 if(file.read(fh, sGarbage, "Description=\"",
sDescription,"\"\r\n") > 0) then
 MyFileList[n_entries].sDescription := sDescription; //
ok, found description
 endif;
 file.close(fh);
 endif;
 endif; // < *.cvt or *.upt ? >
 n_entries := n_entries+1;
 endif; // < "normal" file ? >
 endwhile; // continue_reading ?
 directory.close(handle); // never forget to close files and
directories !
 return n_entries;
 else // failed to open the directory, most likely there's no memory
card:
 return -1;
 endif;
endfunc; // ReadDir()

If the operator selects an entry in the visual table, the table's 'On-Click' stores the index of the
selected table row (line) in a variable ('iSelectedItem'), which is then polled in the scripts
main loop. If the selected item is valid, the script tries to launch the new application via
system.exec :

 if(iSelectedItem >= 0) then // operator has selected an application.
Launch it.
 system.exec(MyFileList[iSelectedItem].sPath +
MyFileList[iSelectedItem].sFilename);
 // system.exec() should load the selected application INTO RAM(!)
 // and start it. When successful, system.exec() never returns.
 // If we ever get HERE, there's something wrong with the selected app
 // so let the operator select another:
 iSelectedItem := -1; // "done" (until the user selects another file)
 endif; // iSelectedItem ?

© MKT / Dok.-Nr. 85122 Version 2.2 213 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

To switch back from the selected application into the app-selector without an extra button (via
system.reboot), the device may simply be restarted (or reset) via the built-in Shutdown
Screen:

Screenshot of the 'Shutdown Screen', implemented in the device firmware

 restarts the application from internal FLASH, for example the 'app-selector'.

script_demos\IncludeTest.cvt : Test application for '#include'
The script in this small example uses an include file. The include file contains a subroutine
('SayHello') which is called from the script in the application.
Below is a snippet from the script sourcecodes, with the included text marked in gray (similar
as in the editor/debugger):

// File : "IncludeTest.cvt"
#pragma strict
#include "Test.inc"
##begin_include "Test.inc" date=2016-08-04_16:24:10 // DO NOT EDIT THIS
PART !
proc SayHello()
 cls;
 print("Hello world, this is Test.inc speaking.\r\n");
endproc;
##end_include "Test.inc"

init_done;

SayHello(); // Call the procedure implemented in Test.inc
// End of the script's "main part".

To load one of these examples into the programming tool, select 'File' .. 'Load Program' in the tool's
main menu. Remember, any script is part of a display application (*.cvt or *.upt), it is not saved in
an extra file.
You will find the examples in the tool's subdirectory 'programs\script_demos' (not to be confused
with the windows 'Programs' / 'Program Files' / 'Programmi' folder .. there is no such language-
dependent nonsense directory inside the programming tool). Sometimes the windoze file selector

© MKT / Dok.-Nr. 85122 Version 2.2 214 / 220

../programs/script_demos/IncludeTest.cvt
../help/touchscreen_01.htm#shutdown_screen
../help/touchscreen_01.htm#shutdown_screen
../help/touchscreen_01.htm#shutdown_screen
../help/touchscreen_01.htm#shutdown_screen

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

will enter that directory immediately. Otherwise, find your way to the directory where the last
version of the programming tool has been installed on your PC.

For an overview of script examples, follow this link to the table of contents.

© MKT / Dok.-Nr. 85122 Version 2.2 215 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 6. Bytecode

Note:
This chapter is considered 'worth reading', but it is not essential to use the script language. It's
up to you to read it, or ignore it. If you like to know what's going on 'under the hood', please
proceed :o)

To increase the execution speed of the script, the sourcecode is translated from plain text ("ASCII")
into a tokenized binary code (bytecode). For various reasons, the bytecode isn't the same as the
microcontroller's native machine code (because in that case, the script couldn't be easily simulated
and debugged in the programming tool). But the microcontroller can execute this code much faster
than interpreting the sourcecode directly (unlike the 'display interpreter', which interprets event
definitions and expressions 'directly', without RPN, and without tokenisation).

Screenshot of script editor (left) with disassembly (right)

Hint:
If you're interested, the bytecode can be seen in the 'disassembly view'.

In the programming tool, open the script editor tab, click on the menu item in the
editor's toolbar, and select 'Show Disassembly / Bytecode'.

In newer versions of the programming tool, the debugger / dissassembler can also be activated
as shown here.

 1 6.1 Compiling the sourcecode into bytecode

The human-readable sourcecode will translated into machine-executable bytecode after loading a
display program, so -as a user- you don't need to care about this. This translation process (called
'compilation') takes place in the programming tool as well as in the real target (firmware), because
the bytecode running on the real target is not exactly the same as in the programming tool.

During compilation, numeric expressions ("formulas") are converted from the normal mathematic
'infix' notation into 'postfix' alias Reverse Polish Notation (RPN). You will hopefully never have to
worry about this (at least not as long as the compiler can parse your code..). Here is an example for
a tokenized statement ("A := 1 + A * (3-1) "). The first line contains the original sourcecode, the
second line shows the RPN (which is almost the same as the bytecode in symbolic form) :

Sourcecode : A := 1 + A * (3-1) ;
RPN / bytecode : 1 A 3 1 - * + ASSIGN(A)

RPN is evaluated from left to right. Operands (constant values and variables) are pushed on the
stack, while operators (like "+"="ADD" or "*"="MULTIPLY") usually pop two values from the
stack, and push the result back on the stack. At the end of an RPN evaluation, the top of the stack

© MKT / Dok.-Nr. 85122 Version 2.2 216 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

contains the result. A list of bytecode operators can be found in the bytecode specification in one of
the next chapters.

Hint:
If you are curious about RPN, and why it's so much easier to evaluate for a machine than the
classic 'infix' notation, search the net for an article titled 'Postfix Notation Mini-Lecture' by
Bob Brown. But again, to use the script language, you don't need to understand all the details.
The debugger's disassembly view also shows the bytecode, with one instruction per line. You
can watch the execution of the code (especially the evaluation of RPN expressions) while
single stepping, and see how intermediate values are pushed on, and popped from the stack.
During single-step, the stack contents are displayed in the editor's status line.
The bytecode concept may sound similar as the one used in a Java Virtual Machine, but they
are not compatible. Each 'value' on the stack carries it's data type along with the value, which
is not the case in a Java VM.

The amount of 'code memory' (RAM for the bytecode) is limited on the target system. This figure
may vary, depending on the amount of RAM on the target system. The stack size is also limited to a
few thousand entries.

To reduce the code memory requirements of your script program...

• Avoid unnecessary 'constant expressions' like this one:
A := 1+2+3 // better use a calculated constant here !

• Use integer variables if you don't need floating point, last not least because the target CPU
doesn't have a floating point unit (FPU).
Beware that old BASIC interpreters used floating point if the data type isn't specified by the
data type suffix .
We don't : We use integer by default, because on older target systems, floating point
calculations were slower than integer arithmetics.

• Integer constants ranging from -32768 to +32767 require less code memory space than
larger values, because there are different opcodes to push 'short' and 'long' values

6.2 The Stack

Stack used by the script runtime

The stack is a classic Last-In / First-Out buffer. If a value (or return address, or similar) is 'pushed'
to the stack, it gets STACKED (not "cellared") on top of the other stack elements. The topmost

© MKT / Dok.-Nr. 85122 Version 2.2 217 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

element on the stack can be 'popped' off the stack, which means read and remove it from the stack.
These are the only operations performed on a basic stack !

To inspect the stack while debugging your code (in the programming tool), use the stack display .
Keep an eye on the stack usage, especially if you program uses a lot of user-defined procedures or
functions, with local variables and recursive calls !

In the script language, the stack is used to evaluate RPN expressions, to store return addresses
(during function- and procedure calls), and local variables. Local variables are allocated on the
stack by pushing a dummy value (usually zero) to the stack, and saving the address of the first local
variable in a register frequently called the 'base pointer'. The local variabes of the currently active
function or procedure are stored in a so-called stack frame, which is explained in the next chapter.

 1.1 6.2.1 Stack Frames (for function arguments and local variables)

As mentioned in the previous chapter, the stack is also used as a storage for local variables. A
special register, called the 'Base Pointer' (BP, similar purpose as in the 8086 CPU from which the
name was "borrowed"), points to the base of the stack frame of the currently active function.
Through the base pointer, that part of the stack area ('stack frame') is accessed like a random-access
memory using the base pointer plus an offset. For example, the bytecode instruction PUSH BP[2]
reads the value of the BP register, adds an offset of two, reads a value from that address, and pushes
it on top of the stack. In effect, it copies some value from one stack location to another, and
increments the stack pointer. In constrast to the stack pointer (SP) which always points to the top of
the stack, the base pointer (BP) remains constant within an instance of a user-defined function or
procedure.

Here is an example for the stack frame inside a function with a few local variables (positive
offsets), and two function arguments (negative base pointer offsets). Note that the stack entries with
negative offset for the base pointer don't strictly belong to the callee's (called function's) local stack
frame, but for simplicity, they can be accessed through the BP.
BP[n] means "the n-th element addressed through the base pointer", treating the stack frame like an
array for simplicity.

 BP[2] = third local variable
 BP[1] = second local variable
 BP[0] = first local variable ("allocated" by the callee)
 BP[-1] = old base pointer saved on the stack, pushed by callee
 BP[-2] = return address on the stack, pushed by caller
 BP[-3] = Number of arguments passed from caller to callee
 BP[-4] = Last function argument (pushed last by the caller)
 BP[-5] = First function argument (pushed first by the caller)
 BP[-6] = Function result aka 'return value' .
 // Space for the 'return value' is reserved by the caller(!)
 // by pushing a zero; regardless of the returned data type.
 // Because the 'Function result' remains on the stack
 // after cleaning up the argument list, the return value
 // is pushed first / popped last .

In contrast to most built-in functions (runtime library functions), user-defined functions don't
remove the function arguments. Here, the caller removes those arguments from the stack which 'he'

© MKT / Dok.-Nr. 85122 Version 2.2 218 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

has pushed before the call, and the callee only cleans up those stack entries which 'he' has pushed
there (like local variables, etc).

 2 6.3 Bytecode specification

... only available in the original HTML file.

© MKT / Dok.-Nr. 85122 Version 2.2 219 / 220

 Dok-Nr. 85122 Script Language for programmable CAN Terminals

 7. Latest Revisions

Note: If you loaded this document from your local harddisk,
   there may be a more up-to-date revision history online !
The online revision history applies to the entire system (including programming tool and device
firmware), while the revisions listed below only apply to the script language.

2021-05-05
Removed some tags to improve the conversion from HTML to PDF; added references to the
CAN simulator.

2020-10-12
Added the file.delete command.

2019-12-17
New commands and data types for text panels .

2019-02-22
New data types (e.g. bool, tColor) and improved automatic type conversions .

© MKT / Dok.-Nr. 85122 Version 2.2 220 / 220

../help/CANSimulator_01.htm
http://www.mkt-sys.de/check4update/ctptwin1.htm#revisions

	Script language for programmable displays
	Contents
	1. Introduction
	1 1.1 Principle
	2 1.2 Unlockable Features for the script language

	2. Script Editor and Debugger
	1 2.1 The Script Editor Toolbar
	2 2.2 Hotkeys and Context Menus of the Script Editor
	3 2.3 Debugging
	4 2.3.1 Breakpoints and Single-Step mode
	5 2.3.2 Disassembler display (code window)
	6 2.3.3 Trace History
	6.1 2.3.3.1 Trace History display format
	6.2 2.3.3.2 Trace History usage
	6.3 2.3.3.3 Excluding certain CAN message identifiers from the Trace History
	6.4 2.3.3.4 Accessing the Trace History via web browser
	6.5 2.3.3.5 Reading the Trace History via serial interface
	6.6 2.3.3.6 Saving the Trace History as a file
	6.7 2.3.3.7 Trace History invocation

	7 2.3.4 Stack Display (with caller addresses and local variables)
	8 2.3.5 Symbol Table with variable display
	9 2.3.6 Watch List (shows values of a selection of variables)
	10 2.3.7 List of memory blocks dynamically allocated by the script
	11 2.3.8 Testing the application in the target's RAM (instead of FLASH)

	3. Interaction between script and display ("programmable display pages")
	1 3.1 Calling a script procedure as reaction when pressing a button
	2 3.2 Modifying display elements via script (texts, colours, etc)

	4. Language Reference
	1 4.1 Numbers and numeric expressions
	2 4.2 Strings
	2.1 4.2.1 Strings with different character encodings
	2.2 4.2.2 String usage and storage format
	2.3 4.2.3 String constants with special characters
	2.4 4.2.4 Strings with backslash sequences
	2.5 4.2.5 String processing

	3 4.3 Constants
	3.1 4.3.1 Built-in constants
	3.2 4.3.2 User-defined constants
	4.3.3 'Calculated' constants (constants 'calculated' at compile-time, not at runtime)
	3.3 4.3.4 Constant tables (arrays)

	4 4.4 Built-in and user-defined data types
	4.1 4.4.4 Explicit type conversions (typecasts)

	4.5 Variables
	4.2 4.5.1 Variable declarations in the script
	4.3 4.5.1.3 Pointers (pointer variables and address operations)
	4.3.1 Assigning the address of a variable to a pointer
	4.3.2 Passing function arguments (parameters) via pointer

	4.4 4.5.2 Accessing script variables from a display page
	4.5.3 Accessing display variables from a script

	4.6 Arrays
	4.6.1 Maximum size (capacity) versus momentarily used length (.len) of an array
	4.5 4.6.2 Other elements of an array-header
	4.5.1 4.6.2.1 Arrays used as FIFO (ring buffer with 'first in, first out'-principle)
	4.5.2 4.6.2.2 Sampling interval and timestamp of the newest array element

	4.6 4.6.3 Examples for the use of arrays

	5 4.7 Operators
	5.1 4.7.1 The 'address taking operator' ('&' or 'addr')
	5.2 4.7.2 Increment- and Decrement-Operator ('++', '--')

	6 4.8 User-defined functions and procedures
	6.1 4.8.1 User-defined procedures
	6.2 4.8.2 User-defined functions
	6.3 4.8.3 Invoking script functions through a backslash sequence from a display page
	4.8.4 Invoking script procedures from the display interpreter
	4.8.5 Input- and output- arguments
	6.4 4.8.6 Recursive calls

	7 4.9 Program flow control
	7.1 4.9.1 if-then-else-endif
	7.2 4.9.2 for-to-(step-)next
	7.3 4.9.3 while..endwhile
	7.4 4.9.4 repeat..until
	7.5 4.9.5 goto
	7.6 4.9.6 gosub..return
	7.7 4.9.7 select..case..else..endselect
	7.8 4.9.8 wait_ms .. wait_resume

	8 4.10 Other functions and commands
	8.1 4.10.1 Numeric functions, "Math", and digital signal processing
	8.1.1 4.10.1.1 Simple numeric functions
	8.1.2 4.10.1.2 Advanced math functions for digital signal processing

	8.2 4.10.2 Timers and Stopwatches (in the script language)
	8.2.1 4.10.2.1 Timers to fire events or periodic intervals
	8.2.2 4.10.2.2 StartStopwatch / ReadStopwatch (simple interval-polling 'stopwatch' timers)

	8.3 4.10.3 print, gotoxy, cls & Co (output into a multi-line text panel)
	8.4 4.10.4 Canvas functions (painting on a tCanvas)
	8.4.1 4.10.4.1 Pixel-wise access (tCanvas method)
	8.4.2 4.10.4.2 Filled rectangle (tCanvas method)
	8.4.3 4.10.4.2 Horizontal scroll (tCanvas method)
	8.4.4 4.10.4.3 Vertical scroll (tCanvas method)

	8.5 4.10.5 File I/O functions

	9 4.10.6 Reception and Transmission of CAN messages (via script)
	9.1 4.10.6.1 can_add_id(<CAN-ID>) : Register a CAN message ID for reception
	9.2 4.10.6.2 CAN.add_filter(<filter>, <mask>, <receive_handler>)
	9.3 4.10.6.3 can_receive (function to poll for CAN reception)
	9.4 4.10.6.4 can_rx_fifo_usage (function)
	9.5 4.10.6.5 can_transmit (procedure)
	9.6 4.10.6.6 can_rx_msg, can_tx_msg
	9.7 4.10.6.7 CAN.DecodeMessage(tCANmsg ptr msg)
	9.8 4.10.6.8 CAN.EncodeMessage(int msgID, tCANmsg ptr msg)
	9.9 4.10.6.9 CAN.VarNameToMessageID(string sVarName)
	4.10.6.10 CAN.MessageIDToVarName(int iMessageID, int n)
	4.10.6.11 Special CAN-bus diagnostic functions

	10 4.10.7 Controlling the programmable display pages from the script
	4.10.8 'System' functions, etc
	11 4.10.9 Date and Time conversions
	12 4.10.10 Commands for the GPS receiver
	13 4.10.11 Commands to control the Trace History
	14 4.10.12 Functions to control the virtual keyboard via script
	15 4.10.13 Interaction between Script and Internet Protocol Stack
	15.1 4.10.13.1 Overview of Internet Application Interface (socket-like API)
	15.2 4.10.13.2 Internet socket state diagram
	15.3 4.10.13.3 Error codes for the Internet Socket Services
	15.4 4.10.13.4 inet.socket(int address_family, int socket_type, int protocol)
	15.5 4.10.13.5 inet.bind(int socket, int port_number)
	15.6 4.10.13.6 inet.listen(int socket, int nConnections)
	15.7 4.10.13.7 inet.accept(int iListeningSocket)
	15.8 4.10.13.8 inet.connect(int socket, int timeout_ms, string destination)
	15.9 4.10.13.9 inet.SetRemoteAddress(int socket, string destination)
	15.10 4.10.13.10 inet.send(int socket, int timeout_ms, input_arguments)
	15.11 4.10.13.11 inet.recv(int socket, int timeout_ms, output_arguments)
	15.12 4.10.13.12 JSON (Javascript Object Notation)
	15.13 4.10.13.13 Internet / Ethernet-related troubleshooting

	16 4.10.14 Interaction between Script and the CANopen Protocol Stack
	17 4.10.15 Extensions to the script language for J1939
	18 4.10.16 Extensions to the script language for ISO 15765-2 (aka "ISO-TP")

	4.11 Event Handling (handling system messages and similar events in the script)
	1 4.11.1 Low-level system event handlers
	1.1 4.11.1.1 OnPageLoaded(int iNewPage, int iOldPage)
	1.2 4.11.1.2 OnPageEnter(int page_nr, string page_name)
	1.3 4.11.1.3 OnPageQuit(int page_nr, string page_name)
	1.4 4.11.1.4 OnPageUpdate(int page_nr, string page_name, int iElement)   or   OnPageUpdate(int page_nr, string page_name, int iElement, tCanvas *pCanvas)

	2 4.11.2 Mid-level event handlers (events from visible controls on a UPT display page)
	3 4.11.3 Timer Events
	4 4.11.4 CAN Receive Handlers
	5 4.11.5 Event handler for the virtual keyboard
	6 4.11.6 Advanced message handling functions

	4.12 Preprocessor Directives
	1 4.12.1 #pragma
	2 4.12.2 #include

	4.13 Keyword List
	4.14 Error messages

	5. Examples
	6. Bytecode
	1 6.1 Compiling the sourcecode into bytecode
	6.2 The Stack
	1.1 6.2.1 Stack Frames (for function arguments and local variables)

	2 6.3 Bytecode specification

	7. Latest Revisions

